
1.0 Introduction

The Super-FinSim Simulation Environment (Super-FinSim), con-
sists of an OVI-compliant Verilog compiler, a simulation
builder, a simulation kernel and a graphical user interface
to drive them.

The purpose of the Verilog compiler is to (1) check the
design for syntactic and semantic correctness, (2) generate
code and elaboration data required to configure and program
the simulation kernel according to the design description,
and (3) optionally generate an intermediate format represen-
tation of the description for processing by other applica-
tions.

The purpose of the simulation builder is to compile the gen-
erated C code (if any) and link all the files that are neces-
sary to build a simulator, i.e. the C object files
corresponding to the Verilog source, the PLI object files
and libraries and the simulation kernel library. The host C
linker is invoked for this purpose.

The simulation kernel is the code that is common to the sim-
ulation of all Verilog designs. Once configured and pro-
grammed, the simulation kernel becomes a simulator for a
particular Verilog design. The simulator in Super-FinSim can
run in compiled, interpreted or a mix of compiled and inter-
preted modes.

1.1 Purpose of this document

This document describes how to use the Super-FinSim Simula-
tion Environment. Specifically, it describes:

• Installation of Super-FinSim

• How to use the compiler

• How to use the simulation builder

• How to use the simulation engine

• Interactive commands

• How to interface Super-FinSim with other tools

• Super-FinSim implementation notes

• Platform specific implementation notes
March 1, 2012 1

2.0 Installation

2.1 Super-FinSim directory structure

The following subdirectories are created during the instal-
lation of Super-FinSim:

bin Directory containing Super-FinSim executable binaries.

lib Directory containing Super-FinSim runtime libraries.

obj Directory containing Super-FinSim object files.

env Directory containing the Super-FinSim environment
script.

include Directory containing Super-FinSim header files.

demo Directory containing Super-FinSim demo designs.

2.2 Super-FinSim installation guide

2.2.1 Installing the UNIX distribution

The following instructions apply to all UNIX distributions,
including Linux. Depending if you received the software on a
CD-ROM or you downloaded it from the Internet, follow the
next instructions to go to the proper directory. After that,
the instructions apply to both cases. The platforms are
encoded as follows:

solaris for Solaris

solaris64 for Solaris 64 bit

linux_glibc20 for the glibc 2.0 compatible Linux distribu-
tions

linux_glibc21 for the glibc 2.1 compatible Linux distribu-
tions

linux_glibc22 for the glibc 2.2 compatible Linux distribu-
tions

linux_glibc23 for the glibc 2.3 compatible Linux distribu-
tions

For Linux, if you are not sure which version of glibc you
have, please run the following command on your Linux
machine:
March 1, 2012 2

ls -l /lib/libc.so.6

If the file is a link to libc-2.0.x.so then you have a glibc
2.0 compatible distribution. If the file is a link to libc-
2.1.x.so then you have a glibc 2.1 compatible distribution,
if it is a link to libc-2.2.x.so your system is based on
glibc2.2, if it is a link to libc-2.3.x.so your system is
based on glibc2.3. Most recent Linux distributions are glibc
2.3 compatible.

Installing from the CD-ROM

The CD-ROM provided contains Super-FinSim for all the sup-
ported platforms. It is mastered under the ISO-9660 file
system. Since the command to mount the CD-ROM varies from one
platform to another, consult your system administrator for
mounting instructions. The following is an example to mount
the CD-ROM under Sun OS 4.1.x:

mount -r -t hsfs /dev/sr0 /cdrom

Go to the directory on the CD corresponding to your platform.
For example, to go to the Solaris distribution:

cd /cdrom/finsim/solaris

and run the C-shell installation script install.csh

#./install.csh

Installing from the download site

You can download the latest FinSim distribution either from
our Web site or from our Ftp site. To download from our Web
site, please go to http://www.fintronic.com, click on Sup-
port and then follow the link “Download the latest version
for your Fintronic product”. To download from the Ftp site,
please:

ftp fintronic.com
login as anonymous and give your email as password
cd pub/products/finsim/<your platform>
bin
prompt
mget *
quit

After finishing downloading, cd to the directory where you
downloaded the files, for example:

cd /user/cad/finsim
March 1, 2012 3

Once you are in the distribution directory, run the C-shell
installation script install.csh.

./install.csh

Installing the GCC compiler

After installing the Super-FinSim software, the installation
script will attempt to install the GNU gcc compiler if it is
not already installed. If you would like to install GCC at a
later time, please run the installation script install.csh
with the option gcc:

./install.csh gcc

Installing the FLEXlm license

Super-FinSim uses the FLEXlm licensing mechanism. The
installation script will attempt to find out if FLEXlm is
already running on your machine and if not, it will attempt
to install the FLEXlm license daemon and utilities. It will
also attempt to install the Fintronic vendor daemon. If you
would like to install the license at a later time, please run
the installation script install.csh with the option license:

./install.csh license

Users with previous FLEXlm licenses experience can skip this
step and proceed to install the licenses received from Fin-
tronic USA as appropriate for their organization.

The license keys received from Fintronic should be added to
your FLEXlm license file if you already have one. The default
is /usr/local/flexlm/licenses/license.lic. The license file
can be installed in another directory by setting the envi-
ronment variable LM_LICENSE_FILE to the appropriate path.

To start the FLEXlm license manager:

lmgrd -c <full path to license file> -l <full path to log file>

If the license manager is already running, just restart it as follows:
lmutil lmreread -c <full path to license file>

The FLEXlm software has many different options and allows
for a variety of configurations. For more information about
the FLEXlm licensing software and for a FAQ please visit out
website: http://www.fintronic.com, click on Support and fol-
low the FLEXlm related links.
March 1, 2012 4

2.2.2 Installing the Windows distribution

The following instructions apply to all Windows versions.

To install FinSim for Windows you need to run the installa-
tion program (finsim.exe). It can be found either on the CD-
ROM you received from Fintronic in the directory Fin-
Sim\winnt or you can download it from our website (www.fin-
tronic.com) or from our ftp site (ftp.fintronic.com) using
the same instructions as for the UNIX distributions. The
installation program will install all the necessary files
and modify autoexec.bat and/or environment variables as
appropriate for the specific Windows version on your
machine.

Installing the Microsoft Visual C++ compiler

To run Super-FinSim in the compiled mode or with a PLI appli-
cation, you need to have Microsoft’s VC++ compiler installed
on your system. If you do not have it, please get it and fol-
low the provided instructions on how to install it.

Installing the FLEXlm License for Windows

As a license administrator you are responsible for setting
up licensing on your system or network. Generally, install-
ing FLEXlm licensing requires the following steps:

1. Select your license server node(s) and get their hos-
tid(s).

2. Send the hostid(s) to Fintronic USA to receive a license
in return.

3. Consider combining the new license file with any existing
license files.

4. Check if the FLEXlm utility programs are installed on your
computer.

5. Start lmgrd (the license manager daemon) .

1. License Server Node and Hostids

Before running Super-FinSim using floating licenses, you
will need to set up your license server node(s). You must
select which node(s) to run your license server(s) on and
provide the hostid(s) of those machines to Fintronic USA.
March 1, 2012 5

To get the hostid of the server machine you can use the fol-
lowing commands:

- for Windows 95/98/ME: WINIPCFG

- for Windows NT: IPCONFIG/ALL

If you don't have an Ethernet card on the computer on which
you want to run the simulator, you can obtain a license based
on a dongle provided by Fintronic USA.

2. Send the hostid(s) to Fintronic USA to receive a license
in return

You can make a request for a license from the Fintronic USA
website www.fintronic.com, or by sending an email to
license@fintronic.com with information about the platform
and hostid(s).

3. Consider combining the new license file with any existing
license file(s)

If you run other programs which require Flexlm licenses, you
can add the license for the Fintronic simulator to the exist-
ing license file. To combine license files, merge all of the
compatible license files into one file, then edit out the
extra SERVER lines so that only one SERVER line remains. Save
this data and you have your combined license file.

4. Check if the FLEXlm utility programs are installed on your
computer

If you already use the Flexlm license manager for other prod-
ucts, the Flexlm utility programs should be installed on
your computer. However, they've also been installed in %FIN-
TRONIC%\bin\cl, where %FINTRONIC% is the directory you
installed the simulator.

5. Start lmgrd (the license manager daemon)

You can start lmgrd manually using:

C:\> lmgrd -c <license_file_path> -l <debug_log_path>

where license_file_path is the full path to your license
file and debug_log_path is the full path to the desired log
file.
March 1, 2012 6

The preferred alternative is to use the supplied applet
flexlm.cpl (located in %FINTRONIC%\bin\cl), which has a lot
of other features, including setting up lmgrd to start auto-
matically at boot time (check 'Start server at Power-
Up'option).

In order for simulator to access your license file, it is
necessary to set an environment variable:

Windows 95/98/ME:

C:> set LM_LICENSE_FILE=<license_file_full_path>

You can set this variable at the command prompt before you
run the simulator or, better, add to the autoexec.bat.

Windows NT/2000:

Go to Control Panel | System | Environment and add the vari-
able there.

For any other information regarding Flexlm License Manager
please check the Flexlm User Guide (http://www.globetrot-
ter.com/TOC.htm).

2.3 Host ‘C’ compiler

Under the Super-FinSim compiled simulation environment, a
host ANSI ‘C’ compiler is used to compile the generated code
and the PLI source code. For the HP version of Super-FinSim,
HP’s cc compiler is required. For the remaining Unix plat-
forms supported by Super-FinSim, GNU’s gcc compiler is
required. Microsoft’s Visual C++ compiler is required for
all the Windows versions.

2.4 Super-FinSim environment variables

Super-FinSim utilizes several environment variables to
define its working environment. They are summarized in the
table below as they would appear in a Unix environment. On
Windows, the same variables are used with the appropriate
modifications (‘/’ becomes ‘\’ and ‘.o’ becomes ‘.obj’).
March 1, 2012 7

FINTRONIC Defines the root directory of Super-FinSim,

FIN_OBJECT_PATH
Defines the location Super-FinSim object files. Its default value is
$FINTRONIC/obj/<compiler>.

FIN_INCLUDE_PATH Defines the location of Super-FinSim header files. Its default value
is $FINTRONIC/include.

FIN_LIBRARY_PATH Defines the location of Super-FinSim library files. Its default value
is $FINTRONIC/lib/<compiler>.

FINSYSPLIOBJ Defines the location of the Super-FinSim system PLI object file.
Its default value is $FIN_OBJECT_PATH/verisim.o

FINTEMPDIR Defines the working directory of a design relative to the directory
in which the design is simulated. Most Super-FinSim generated
files are stored in the working directory. Its default value is
fintemp.

3.0 How to use the compiler

3.1 Operations performed by the compiler

The compiler performs the following operations:

1. Finds syntactic and semantic errors in the design.

2. Generates the code necessary to configure and to program the simulation engine.

3. Generates elaboration data files to build the simulator data structures.

4. Generates a design file used to build the simulator.

5. Optionally generates debugging information for a source level debugger or source
profiler.

6. Optionally writes the Intermediate Format corresponding to the design on disk.

3.2 Invoking the Verilog Compiler

The Super-FinSim Verilog compiler has a fast and robust ana-
lyzer with an extensive error checking and recovery mecha-
nism. In addition, the analyzer can optionally generate a
number of warning messages flagging potential design errors
such as accessing an array element out of bounds.

The Super-FinSim Verilog compiler is invoked as follows:

finvc <option or source file> [<option or source file> ...]

Some compiler options from Verilog-XL are supported in the
Super-FinSim Verilog compiler, including options that con-
March 1, 2012 8

trol the library search mechanism. Command files are also
supported to facilitate invocation.

The desired simulation mode of Super-FinSim, whether it be
compiled, interpreted or a mixture of compiled and inter-
preted must be specified at compilation time. If no options
are specified, Super-FinSim will attempt to simulate the
entire design in compiled mode if a license for compiled sim-
ulation is found. If not, the design will be simulated in the
interpreted mode.

All compiler messages are stored in the log file
‘finvc.log’.

3.2.1 Verilog Compiler Options

Library search control options

-ld <dir>: search for undeclared modules in the specified
library directory

-y <dir>: same as -ld <dir>

-lf <file>: search for undeclared modules in the specified
library file

-v <file>: same as -lf <file>

-le <str>: use the specified string as the file extension
when searching for undeclared modules in library directories

+libext+<str>: same as -le <str>

-lsm <str>: the specified string describes the library
search mechanism to use, it must be one of d (default), o
(order) or r (rescan)

+liborder: same as -lsm o

+librescan: same as -lsm r

Include file search control options

-id <dir>: search for include files in the specified include
directory

+incdir+<dir>: same as -id <dir>
March 1, 2012 9

Control file options

-cf <file>: take command line information from the specified
command file

-f <file>: same as -cf <file>

Macro definition options

-dm <name>[=<value>]: define a macro with name <name> and
value <value>

+define+<name>[=<value>]: same as -dm <name>[=<value>]

Warning suppression options

-nowarn <warning number> : suppress warning with the speci-
fied number

-imtm : suppress warning messages about inconsistent
min:typ:max expressions that can be evaluated at compile
time (e.g. 5:4:3)

-rmmo: suppress warning messages about range mismatches in
mode and object declarations (e.g. input [0:7] a; wire [1:8]
a;)

-fwrv: suppress warning messages about functions without a
return value i.e. functions that do not assign to a register
that has the same name as the function

-nprc: suppress warning messages about non positive replica-
tion counts in replicated concatenation expressions (e.g. {0
{r}}, {-1 {1’b1}})

-sav: suppress warning messages about slicing of supposedly
atomic vectors (e.g. integer i; time t; initial i[10:9] =
t[5:4];)

-cpd: suppress warning messages about cyclic parameter
dependencies that may be created when parameters are over-
ridden
March 1, 2012 10

-pot: suppress warning messages about parameters whose value
is overridden two or more times

-ucp: suppress warning messages about ports that are left
unconnected module/primitive instantiations

-aoi: suppress warning messages about modules that assign to
their own input(s)

-mapl: suppress warning messages about ports that appear
multiple times in the port list

-ues: suppress warning messages about unknown escape
sequences encountered in strings

-rcel: suppress warning messages about case expressions or
case labels that are of type real

-bss: suppress warning messages about bad strength specifi-
cations (e.g. supply0 (pull0, pull1) vcc = 1’b1;)

-bpsu: suppress warning messages about bad usages of parame-
ters or specparams (e.g. using parameters within specify
blocks, using specparams outside specify blocks, overriding
of specparams

-swlv: suppress warning messages about specparams with list
values (e.g. specparam s = (0, 1, 2, 3, 4, 5);), only the
first value (0) is significant

-rdm: suppress warning messages about redefinitions of mac-
ros

-umnd: suppress warning messages about undefining of macros
that are not defined

-bmn: suppress warning messages bad macro names in the com-
mand line (e.g +define+@#!!!++)

-icd: suppress warning messages about incorrect usage of the
‘celldefine directive (e.g. nested ‘celldefines, unmatched
‘celldefines/‘endcelldefines)

-ip: suppress warning messages about incorrect usage of the
‘protect directive (e.g. unmatched ‘protect/‘endprotects)

-eti: suppress warning messages about extraneous tokens
placed after a ‘include “<file>” directive
March 1, 2012 11

-cee: suppress warning messages about constant event expres-
sions (e.g. always @(25) a = b;)

-nseee: suppress warning messages about non scalar event
expressions with edge specifiers (e.g. @(posedge a[0:7]))

-tne: suppress warning messages about triggered objects that
are not events (e.g. real r; initial -> r;)

-tmpi: suppress warning messages about primitives with too
many inputs

-bpte: suppress warning messages about bad entries in a
primitive table (e.g. ? ? : 0)

-dreni: suppress warning messages about data or reference
events in timing checks that are not module inputs

-wmiopp: suppress warning messages about width mismatches
between inputs and outputs in a parallel path specification
(e.g. i[0] => b[0:100] = 10;)

-wmodsep: suppress warning messages about width mismatches
between the output and data source in an edge sensitive path
specification (e.g. (posedge i[0] => (o[0] : c[0:2])) = 10;)

-nnsr: suppress warning messages about notify expressions in
timing checks that are not scalar registers

-ustf: suppress warning messages about unknown system tasks/
functions

-stfap: suppress warning messages about system tasks/func-
tion arguments that may cause problems

-ind: suppress warning messages about implicit net declara-
tions

-bcwts: suppress warning messages about width specifications
in based constants that are too small to hold the value of
the constant (e.g. 2’hff)

-scw32: suppress warning messages about shift count expres-
sions whose width is greater than 32

-aiw32: suppress warning messages about array index expres-
sions whose width is greater than 32
March 1, 2012 12

-rcw32: suppress warning messages about repeat count expres-
sions in repeat statements whose width is greater than 32

-mccw32: suppress warning messages about multiple concatena-
tion expressions in which the width of the sub expression
representing the replication count is greater than 32

-mcdw32: suppress warning messages about expressions repre-
senting multi channel descriptors whose width is greater
than 32

-dw64: suppress warning messages about delay expressions
whose width is greater than 64

-ncd: suppress warning messages about non constant delay
expressions

-rd: suppress warning messages about delay expressions of
type real

-nd: suppress warning messages about negative delay expres-
sions

-xzd: suppress warning messages about delay expressions that
contain x’s or z’s

-tmarg: suppress warning messages about type mismatches
between actual and formal arguments of tasks/functions

-wmarg: suppress warning messages about width mismatches
between actual and formal arguments of tasks/functions

-twmarg: same as “-tmarg -wmarg”

-tmass: suppress warning messages about type mismatches
between the lhs and rhs of assignments

-wmass: suppress warning messages about width mismatches
between the lhs and rhs of assignments

-twmass: same as “-tmass -wmass”

-tmgate: suppress warning messages about type mismatches
between gate terminals and the expressions connected to them

-wmgate: suppress warning messages about width mismatches
between gate terminals and the expressions connected to them

-twmgate: same as “-tmgate -wmgate”
March 1, 2012 13

-tmport: suppress warning messages about type mismatches
between module/primitive ports and the expressions connected
to them

-wmport: suppress warning messages about width mismatches
between module/primitive ports and the expressions connected
to them

-twmport: same as “-tmport -wmport”

-tmcel: suppress warning messages about type mismatches
between case expressions and case labels

-wmcel: suppress warning messages about width mismatches
between case expressions and case labels

-twmcel: same as “-tmcel -wmcel”

-tmexp: suppress warning messages about type mismatches
(leading to type conversions) between operands of the fol-
lowing expressions (+, -, *, /, , <, <=, >, >=, ==, != , ===,
!==, &, !, ^, ^~, ?:

-wmexp: suppress warning messages about width mismatches
between operands of the following expressions (+, -, *, /, ,
<, <=, >, >=, ==, !=, ===, !==, &, !, ^, ^~, ?:

-twmexp: same as “-tmexp -wmexp”

-tm: same as “-tmarg -twmass -tmgate -tmport -tmcel -tmexp”

-wm: same as “-wmarg -wmass -wmgate -wmport -wmcel -wmexp”

-twm: same as “-twmarg -twmass -twmgate -twmport -twmcel -
twmexp”

-eswis: generate warning messages about event statements
with incomplete sensitivities e.g (@(a or b) d = a + b + c;),
these messages are suppressed by default

-a: suppress all warning messages

Source encryption options

-encrypt: encrypt all code within ‘protect and ‘endprotect
directives, an auto encryption option will also be added
soon
March 1, 2012 14

+protect: same as -encrypt

Delay component selection options

-min: use the min component in min:typ:max expressions

+mindelays: same as -min

-typ: use the typ component in min:typ:max expressions, this
is also the default

+typdelays: same as -typ

-max: use the max component in min:typ:max expressions

+maxdelays: same as -max

Delay mode selection options

+delay_mode_zero : use zero delay mode

+delay_mode_unit : use unit delay mode

+delay_mode_path : use path delay mode

+delay_mode_distributed : use distributed delay mode

License related options

-lic <file>: read license keys from the specified file
rather than the one specified in the environment variable
FIN_LICENSE_PATH or LM_LICENSE_FILE

-lic_verbose: run the license manager in verbose mode, use-
ful for debugging license problems

-lic_type <100K|50K|25K|2K> : if you have licenses for dif-
ferent types of simulators and want to get a specific one

Interpretation/Compilation options

-comm <mod> : compile the specified module
March 1, 2012 15

-intm <mod> : interpret the specified module

-comf <file> : compile modules read from the specified file

-intf <file> : interpret modules read from the specified
file

-comd <dir> : compile modules read from any file in the
specified directory

-intd <dir> : interpret modules read from any file in the
specified directory

-dsm <mode> : sets the default simulation mode to compile
(-dsm com) or interpret (-dsm int), -dsm com is the default

-sysc <file> : considers that file contains SystemC mod-
ules. Some of these modules may be instantiated in Verilog
modules. Multiple such options may be used in the same finvc
invocation.

-tp<module_name>: specifies a top-level module. If one top-
level module is specified usually it is better to specify all
top-level modules. Multiple such options may be used in the
same finvc invocation.This option is mandatory in case gen-
erate statements occur in the Verilog code.

-irc : incrementally recompile the design, this
option should be used when small changes are made to a design
in which most or all modules are compiled, finvc determines
the modules affected by the changes and interprets them to
bypass the C compiler and linker

Compiler output options

-td <dir>: place generated files required for simulation in
the specified directory, the default is ./fintemp

-pp: pretty print (decompile) the source (in file pp.out)

-d: same as -pp

-stb: print the symbol table (in file stb.out)

-ifb: print the intermediate format in binary (in file
ifb.out)
March 1, 2012 16

-ifa: print the intermediate format in ascii (in file
ifa.out)

Debugging options

+finvcc: generate information for Fintronic’s code coverage
tool

+vtdbg: generate information for Veritool’s source level
debugger

Optimization related options

-ol <0-11> : use the specified integer as the opti-
mization level, a higher level indicates that more optimiza-
tions will be performed, the default is 1 (many
optimizations are performed at level 1)

+fin_g2p_max_nd_inp+<num_inputs> : num_inputs may be
between 7 and 12. The higher the number the more memory will
be used, but the faster the simulaton may run. The simulation
may also run slower in case the larger memory size affects
the cache utilization.

-acc : use the acceleration algorithm in the
simulator

-noacc : do not use the acceleration algorithm
in the simulator

+symb_eval : necessary in order to process evalua-
tion of symbolic expressions

+symb_proc : necessary in order to process symbolic
transformations, such as $Dif, $Int, $Lap, $ILap

+move_TF_to_glbl : moves, if possible, tasks and func-
tions to a global module named Fin$$Glbl

+no_inl_func : prevents inlining of functions

+inl_ct_func : inlines constant function calls, i.e.
calls which will always produce the same result

+caxl : accelerate continuous assignments
March 1, 2012 17

+notimingchecks : ignore timing checks

+no_notifier : ignore notify registers in timing
checks

+fin_no_ecs : do not use Fintronic’s Enhanced Cycle
Simulation, usage of this option will increase simulation
time

+fullaccess : keep detailed information on all
declared signals; this option might increase simulation time
and memory consumption

-fastgate : use the fast gate algorithm in the
simulator

+no_plusargs_substitution: does not optimize calls to
$test$plusargs with constant string arguments at compile
time allowing users to run the simulator multiple times with
different plus args without having to recompile and build
the simulator for each run, usage of this option will
increase simulation time

Other options

-pli: generate pli information even if the user’s source
code does not have pli calls (needed for instance when used
with Intergraph’s Veriscope tool)

-des <str>: use the specified string as the name of the
design

-ao: perform syntax and semantic analysis only, do not gen-
erate code and data for simulation

-c: same as -ao

-uc: convert all identifiers to upper case

-u: same as -uc

-ptab <file>: get information about pli tasks/functions from
the specified ascii file instead of having to link user’s pli
object files to obtain this information

-nttfsm: reject constructs not supported by NTT’s FSM tool
March 1, 2012 18

-log <file>: use the specified file as log file instead of
the default finvc.log

-silent: suppress messages about whic source/library files
are currently processed

-help: display all options

3.2.2 Precedence order for simulation mode options

The Verilog compiler determines the simulation mode of a
module (compiled or interpreted) based on the invocation
options ‘-comm <mod>’, ‘-intm <mod>’, ‘-comf <file>’, ‘-intf
<file>’, ‘-comd <dir>’, ‘-intd <dir>’ and ‘-dsm <mode>’. The
precedence order of these options are:

1. -comm <mod>, -intm <mod>

2. -comf <file>, -intf <file>

3. -comd <dir>, -intd <dir>

4. -dsm <mode>

For example, if the user types the following:

finvc -intf test.v -comm test

and the module ‘test’ is defined in the file ‘test.v’, then
all modules in file ‘test.v’ will be interpreted except
‘test’ which will be compiled.

3.3 Files generated by the Verilog compiler finvc

The Verilog compiler generates ‘C’ code files, interpreta-
tion data files and elaboration data files for each design.
The ‘C’ code, interpretation data and elaboration data files
have the extension ‘.c’, ‘.i’ and ‘.edf’ respectively. The
compiler also generates some other files needed at run time.

All files generated by the Verilog compiler are stored in the
working directory defined in the environment variable
FINTEMPDIR, the directory specified with the -td option or
the directory fintemp created in the local directory.

3.4 Incremental recompilation

Incremental recompilation can be used when small changes are
made to a design in which most of the modules are compiled.
The compiler determines the modules affected by the changes
March 1, 2012 19

and interprets them to bypass the C compiler and linker. The
first time around, finvc should be invoked in the usual way.
For subsequent runs, the option ‘-irc’ should be added to the
other finvc options to take advantage of the incremental
recompilation feature.

3.5 Separate compilation

Super-FinSim provides the facility of separately compiling
parts of the Verilog hierarchy. This pre-compiled hierarchy
can then be mixed with other Verilog sources to build a new
design. This facility is extremely helpful for users who
want to ship their IP to their customers but do not want them
to access the Verilog source. Not only will the access to the
source be denied using the regular `protect/`endprotect
mechanism but the IP provider will only have to ship binary
files which would make it virtually impossible to re-create
the original Verilog code. Another useful application of
separately compiled code is for users who add legacy code to
their designs which has been tested and will not need to be
modified.

3.5.1 Compiling a Verilog Design Hierarchy into object code for later reuse

A Verilog description can be separately compiled for later
reuse by invoking the compiler, called finvc, with the spe-
cial option +sepgen, followed by an invocation of finbuild,
as follows:

#finvc +sepgen+<mymodel> <other options>

#finbuild

where <mymodel> is a name given by the user to this design.
One of the uses of <mymodel> is to make any symbols in the
separately compiled design not clash with similar symbols in
the final design (which instantiates the separately compiled
design). After running these two steps, the temporary direc-
tory (fintemp by default) will contain the compiled `C'
files, the interpretation data files, the elaboration data
files as well as all other files needed for simulating this
hierarchy. In addition it will contain a Verilog interface
file called interface.v. This file contains the shell for
the exported modules in the separately compiled design. Any
of these modules can be instantiated in the final design.
March 1, 2012 20

finvc also assumes that everything in the separately com-
piled design except the interface for the top level module is
protected. This assumption can be relaxed with the option
(+fin_sep_unprotect).

3.5.2 Using a separately compiled hierarchy

In order to use a separately compiled Verilog design hierar-
chy as part of a new Verilog design hierarchy one must invoke
finvc with the special option +sepuse, followed by finbuild
and the invocation of the executable simulator, as follows:

finvc +sepuse+<directory name> <other options>

finbuild

TOP.sim

The directory name is the directory where all the files were
generated in the compilation step. More than one such
+sepuse options can be specified. In this case finvc treats
the file interface.v in the separately compiled directory as
a library file, so that any module that is used in the final
design and cannot be found is searched in this file.

3.5.3 Restrictions

Restrictions on the separately compiled code

A module in the separately compiled design can be instanti-
ated outside of the separately compiled design only if:

a) there are no external references anywhere in the the sep-
arately compiled design (things like a.b.c)

b) none of its parameters or the parameters of the modules
instantiated in the hierarchy below it are overwritten with
more than one value

Restrictions on the code instantiating a separately compiled
module

A design can instantiate modules from the separately com-
piled design if:
March 1, 2012 21

a) it does not overwrite the parameters of the separately
compiled module

b) it doesn't make external references into the separately
compiled design

c) its time precision is not finer than the time precision of
the separately compiled design.

3.6 Calling user C tasks/functions in Super-FinSim without the PLI
interface

Super-FinSim allows the user to call functions written in
the C language directly from within the Verilog code. The
user only has to provide one or more C header files with the
prototypes of the C functions.

The arguments of these C functions can be characters (8
bits), short integers (16 bits) integers (32 bits), long
long integers (64 bits) and pointers to them. Super-FinSim
assumes that all pointers in the interface correspond to
outputs that are going to be written inside the C functions.
All other arguments are assumed to be inputs to the C func-
tions. The semantics for calling C user functions and tasks
are similar to the semantics for calling Verilog or PLI func-
tions and tasks.

The header files providing the prototypes of the C functions
are passed to finvc with the -ch <name of header file>
option. This option can be specified any number of times if
more than one header file is required. Note that the header
files must be self sufficient (as all well written header
files ought to be), i.e. if a header file uses things defined
in another header file then the 2nd header file should be
included in the 1st header file. If any of the header files
is in a different directory, the user can specify the include
directory by using the +incdir option the same way as for
verilog header files.

The object files containing the user C functions can be spec-
ified either in the file finpli.mak in the variable FINUSER-
COBJ:

FINUSERCOBJ = example.o
March 1, 2012 22

or via the environment variable with the same name:

#setenv FINUSERCOBJ example.o

More than one object files can be specified. If used, the
file finpli.mak has to be in the local directory where fin-
build is called.

If the specified object file does not exist, finbuild will
attempt to compile it using a default compilation rule that
calls the C compiler on the corresponding .c file.

This facility is currently supported on Linux glibc2.2,
glibc2.1, Solaris 32 and 64.

3.7 Using Mixed Verilog/SysytemC descriptions

3.7.1 Introduction

Super FinSim is integrated with the SystemC simulator owned
by OSCI. Please note that no representation is being hereby
made with regards to the functionality or the quality of this
simulator governed by the Open Source License Agreement pro-
vided by OSCI on its WEB site.

Supported platforms: Linux 32 bit (glibc2.1, glibc2.2,
glibc2.3) and Solaris 32 bit.

Supported versions of SystemC: SystemC-2.0.1 only

3.7.1 3.7.2 Instantiating SystemC modules in Verilog

Verilog modules that are empty and contain in their body:

(* foreign=SystemC *)

are considered to be SystemC modules.

3.7.2 3.7.3 Invoking finvc when there are SystemC modules involved

The option -sysc <file> must be provided to finvc, where
<file> contains the SystemC description of all SystemC mod-
ules instantiated in the current Verilog simulation.

3.7.3 3.7.4 Rules to be observed by SystemC modules instantiated in Verilog:

i) The size and order of the ports of the Verilog prototype
(description of ports) must match the size and order of the
March 1, 2012 23

SystemC ports. The name of the ports in the Verilog prototype
do not matter, but it is preferable for documentaion pur-
poses to have them being the same.

ii) SystemC modules shall have one bit ports of class
sc_logic only. Class sc_bit is not supported at this time and
class sc_lv shall not be used for vectors of one bit.

iii) SystemC modules shall have ports that are vectors of
strictly more than one bit of class sc_lv only. Class sc_bv
is not supported at this time.

iv) The size of SystemC port vectors shall not be more than
80,000 bits per port.

v) The Verilog prototype of SystemC modules shall have vec-
tors declared in ascending order only.

3.7.4 3.7.5 Invoking TOP.sim or the name of the simulator

All the options available can be passed to the simulator.
They will affect only Verilog modules. One can provide trac-
ing information to the SystemC simulator by editing the file
fintemp/mixed_sc_gen.cpp and inserting tracing-related calls
in sc_main.

Note: An example of a simulation involving Verilog modules
that instatiate SystemC modules is provided in the distribu-
tion under demo/demo_systemc.

4.0 How to build the simulator

4.1 Operations performed by the simulation builder

Once the design has compiled successfully, a simulator can
be built by invoking the simulation builder, finbuild. Simu-
lators can be built to run stand-alone or integrated into a
waveform display interface.

The process of building the simulator includes the compila-
tion of the generated ‘C’ file(s), linking the object
file(s) with the simulation kernel, appropriate waveform
interface and PLI object files if any. Compilation of ‘C’
files can be performed on a single machine (default) or
across a network of homogenous machines.
March 1, 2012 24

Compilation on a single machine can be performed sequen-
tially or concurrently. In the latter case, the user has the
option to specify how many compilation tasks can be launched
at a time. This can speed up compilation time dramatically.
However, more memory is utilized since there are more pro-
cesses running. Concurrent compilation may not be faster
than sequential compilation when the system does not have
enough memory and/or there are too many processes running
which overload the system and increase disk swapping activ-
ity.

Network compilation allows the simulation builder to spawn
compilation tasks across many homogenous machines on the
network. It is important that all machines specified have
the same architecture. In the default mode, the simulation
builder does not attempt to check whether the specified
machine is valid or whether it has the same architecture as
the others. To enable checking of the specified machines
used for network compilation, one must specify the option ‘-
hostchk’. This option must be specified before any machine
name is specified.

Once the simulator is built, it is stored under the name:

<design name>.sim (for UNIX)
<design name>.exe (for Windows)

The simulation builder obtains the design name from either
the default name “TOP” or from the user invocation option ‘-
des <name>’. Its name is then compared with the design name
stored in the design file. If they are the same, the simula-
tor can be built. If one changes the default design name when
invoking the Verilog compiler, it is also necessary to spec-
ify that design name when invoking the simulation builder.
If the default design name is always used when invoking the
compiler, then it is not necessary to specify the design name
when invoking the simulation builder.

All messages generated by the simulation builder are stored
in the log file ‘finbuild.log’.

All messages generated by the host C compiler are stored in
the log file ‘compile.log’.

4.2 Invoking the simulation builder

The Super-FinSim simulation builder, finbuild, is invoked as
follows:
March 1, 2012 25

finbuild <build options>

4.2.1 Simulation builder options

-help: Display invocation options.

-pch: Use precompiled header files.

-static: Use the static library of FinSim.

-verbose: Display compilation command string.

-clean: Remove generated ‘C’ and object files.

-des <name>: Specify the name of the design.

-td <dir>: Specify the working directory.

-relpath: Use relative paths for include directories, object
files etc.

-lic <file>: Process the licensing from a specified license
file.

-lic_type <100K|50K|25K|2K> : Use the license for the speci-
fied product.

-driver: Generate driver file.

-vt: Link simulator with Veritool’s PLI interface.

-H<host>: Add remote host for network compilation.

-C<compiler>: Specify the name of the compiler.

-L<linker>: Specify the name of the linker.

-O<level>: Specify optimization level for C compilation.

-hostchk: Check the validity of the hosts entered.

-concurrent <num>: Compile all modules concurrently (Unix
only)

-seq: Compile all modules sequentially.

+<option>: Specify additional compilation option.
March 1, 2012 26

-um <name>: Use specified name instead of main(). For users
who supply their own main() function.

4.2.2 Removing system files

Once the simulator is built, one can remove all the ‘C’ and
object files by specifying the invocation option ‘-clean’.
These files are not needed to run the simulation but are
required if the incremental recompilation feature will be
used subsequently.One must never delete the elaboration data
files prior to simulation because they are required by the
simulator.

5.0 Building the PLI interface in Super-FinSim

In order to support PLI, the compiler needs to obtain infor-
mation about the user tasks and functions. Since this infor-
mation is provided in the standard PLI table veriusertfs, a
mechanism is required to link it into the compiler.

Super-FinSim provides two methods of doing this. The first
method is the use of a Fintronic PLI table. This is an ASCII
text file containing information about the user PLI tasks
and functions. This table can be created manually or it can
be generated automatically. The second method is to build a
custom compiler. This is achieved by linking all the user PLI
object files with a custom compiler library.

A sample ‘C’ interface file, ‘veriuser.c’ is provided in the
directory $FINTRONIC/include.

5.1 Using the Fintronic PLI table

The Fintronic PLI table can be created manually or automati-
cally. The table consists of one entry for each PLI task or
function. Each entry has the following format:

<NAME> <TYPE>

‘NAME’ is the name of the routine used in the Verilog source,
e.g. $myplifunc

‘TYPE’ can be one of the following

task: Specify a user defined task.
March 1, 2012 27

func_real: Specify a user defined function returning a type
real.

func_sized_[dd]: Specify a user defined function returning a
value whose width is [dd], e.g. func_sized_32

Verilog style comments may be inserted anywhere within the
table.

5.1.1 Creating the table manually

To construct the Fintronic PLI table manually from a stan-
dard PLI table, veriusertfs, perform the following steps:

1. Create equivalent entries in the Fintronic PLI table for all the entries found in the
standard PLI table except for the very last one.

2. The NAME field in the Fintronic PLI table is obtained from the 7th element in the
standard PLI table (tfname).

3. The TYPE file in the Fintronic PLI table is obtained from the 1st element in the
standard PLI table (type) with the following conversion:
usertask -> task

userfunction -> func_sized_[dd]

userrealfunction -> func_real

Given a PLI definition below:

#include "veriuser.h"

#include "acc_user.h"

static int myfuncsize()

{

 return(3);

}

static int myfunc()

{

 io_printf("$my_func is called\n");

 tf_putp(0, 1);

}

static int mytask()

{

 io_printf("mytask is invoked.\n");

}

March 1, 2012 28

s_tfcell veriusertfs[] = {

/*

 ******************* Entry definition ************************

 {type, data, checktf, sizetf, calltf, misctf, tfname, forwref},

*/

 {usertask, 0, 0, 0, mytask, 0, "$mytask", 0},

 {userfunction, 0, 0, myfuncsize, myfunc, 0, "$myfunc", 0},

/* all entry must be entered before this line */

 {0, 0, 0, 0, 0, 0, 0, 0} /* this must be the last entry */

The Fintronic PLI table is as follows:

$mytask task

$myfunc func_sized_3

5.1.2 Creating the table automatically

The Fintronic PLI table can be built automatically by per-
forming the following steps:

1. Define PLI object files in the environment variable FINUSERPLIOBJ. For example,
if PLI routines are stored in the file veriuser.c and mypli.c, then the environment
variable FINUSERPLIOBJ must be defined as follows:

setenv FINUSERPLIOBJ “veriuser.o mypli.o”

2. Define PLI static library files if any in the environment variable FINUSERPLILIB.

3. Define PLI dynamic libraries if any in the environment variable FINUSERPLIDLL.

4. Build the custom table generator
make -f $FINTRONIC/include/MakeTAB

5. Run the table generator
finvtab > <table>

If the PLI definition file, finpli.mak is used, step 4 must
be run as follows:

make -f $FINTRONIC/include/MakeTABI
March 1, 2012 29

5.2 Building a custom compiler

The custom compiler can be built in 2 ways. The first method
is the use of environment variables FINUSERPLIOBJ, FINUSERP-
LILIB, and FINUSERPLIDLL as shown below:

1. Define PLI object files in the environment variable FINUSERPLIOBJ. For example,
if PLI routines are stored in the file veriuser.c and mypli.c, then the environment
variable FINUSERPLIOBJ must be defined as follows:

setenv FINUSERPLIOBJ “veriuser.o mypli.o”

2. Define PLI static library files if any in the environment variable FINUSERPLILIB.

3. Define PLI dynamic libraries if any in the environment variable FINUSERPLIDLL.

4. Build the custom compiler
make -f $FINTRONIC/include/MakePLI

The second method uses a PLI definition file named ‘fin-
pli.mak’. This file contains the definitions of FINUSER-
PLIOBJ, FINUSERPLILIB, and FINUSERPLIDLL similar to method
1. In addition, dependencies among the PLI source code and
header files can be specified.

The custom compiler can then be built as follows:

make -f $FINTRONIC/include/MakePLII

The only difference between the makefile, ‘MakePLI’ and
‘MakePLII’ is that the latter includes the PLI definition
file. The default rule to compile the PLI source code is
defined in the makefile itself. If the PLI definition file is
used, it is possible for one to override the default compila-
tion rule.

The custom compiler is named ‘vc’ by default. This name can
be changed by either modifying the makefile itself or by
overriding the default compiler name on the command line as
shown below:

make -f $FINTRONIC/include/MakePLI FINVC=<compiler name>

Note: It is not necessary to rebuild the custom compiler if only the body of the PLI code is changed.
However, it is necessary to rebuild the custom compiler if the functional interface is changed such
as the width of the value returned by a PLI function.

5.3 Building the simulator with PLI

Whenever PLI is utilized in the design, the simulation
builder will obtain the information of all the PLI object
March 1, 2012 30

files from either the PLI definition file or the environment
variables FINUSERPLIOBJ, FINUSERPLILIB and FINUSERPLIDLL. If
the PLI definition file is found in the current path, the
simulation builder will always use it first even if the PLI
environment variables are also defined.

For an example on how to link in a PLI application, run the
example in the demo_pli directory in the Super-FinSim dis-
tribution.

5.4 Using multiple veriusertfs tables

Super-FinSim allows the user to link in multiple PLI appli-
cations eachwith its own veriusertfs table without having to
manually merge the tables. To do so, please follow these
steps:

1. Link your PLI application into a shared library.

For gcc, you can do this by passing the -shared option:

gcc -shared pli1.o <other pli objects/libraries> -o pli.so

2. Call finvc with as many tab files as needed. Please note
that you may choose to create only one tab file if you want
but this is not necessary:

finvc -ptab pli1.tab -ptab pli2.tab <other -ptab options>
...

3. Set the variable FINUSERPLIDLL to include all the shared
PLI libraries.

If you are setting this variable via the enviroment:

setenv FINUSERPLIDLL "pli1.so pli2.so <other shared PLI
libraries>"

If you are using the finpli.mak file:

FINUSERPLIDLL = pli1.so pli2.so <other shared PLI libraries>

4. Run finbuild with your regular options:

finbuild <your options>
March 1, 2012 31

5. On Unix/Linux systems set the environment variable
LD_LIBRARY_PATH to the paths where your shared PLI libraries
reside:

setenv LD_LIBRARY_PATH <path to pli1.so>:<path to
pli2.so>:<path to other shared PLI librar-
ies>:$LD_LIBRARY_PATH

6. Run TOP.sim (or whatever the name for the simulator you
chose) with the extra +veriuser+<name of shared PLI library>
options:

TOP.sim +veriuser+pli1.so +veriuser+pli2.so <+veriuser+other
shared PLI libraries> <other simulation options>

6.0 How to use the simulation engine

6.1 Operations performed by the simulation engine

The simulation engine performs two main operations:

1. Builds simulation objects: nets, registers, activities, etc.

2. Simulates a network of simulation objects that represents a particular design.

6.2 Invoking the simulator

The simulator is invoked as follows:

<design name>.sim <simulator options>

The simulator invocation options can be specified in any
order. A few examples of simulator invocations are:

TOP.sim -i -nodriverchk
FDC.sim -r 5000 -script scriptfile

3. Simulates a network of simulation objects that represents a particular design.

4. Simulates a network of simulation objects that represents a particular design.
March 1, 2012 32

6.3 Simulator Options

-b : Build the simulation data structure only.

-r <time> : Run simulator for a specified time.

-i : Run simulator in interactive mode.

-delta <value>: Specify the maximum delta during a time
cycle.

-deltastop : Interrupt the simulation if delta reached
its maximum value.

-tr : Trace all signals.

-t <traceFile>: Trace signal specified in Fintronic Trace
File.

-wave : Invoke real time waveform display.

-log <logFile>: Create simulation log file.

-key <keyFile>: Create simulation key file.

-script <scriptFile>: Read interactive command from a file
instead of standard input.

-nolibcell : Disable cell instance from library.

-notimechk : Disable timing check.

-notimechkm <module>: Disable timing check on a specified
module.

-notimechki <instance>: Disable timing check on a specified
instance.

-nowarning : Suppress warning messages.

-nofillmemwarning : Suppress warning messages regarding over
or underfilled user memories

-noannotate : Disable back-annotation through PLI or
SDF.

-nopath_cond : Ignore the SDPD condition.

-path_edge : Enable the edge condition.
March 1, 2012 33

-nopulsemsg : Disable warning messages about pulse con-
trol errors.

-pulse_reject : Global path pulse control (0 - 100) :
reject limit.

-pulse_error : Global path pulse control (0 - 100) :
error limit.

-path_cond_edge : Do not ignore the edge condition if both
SDPD and edge conditions are provided.

-fastgate : Speed up gate level simulation.

-fastca : Speed up continuous assignment.

-nodriverchk : Disable check for net having no driver to
it

-ncols <num> : Specify the number of columns, <num> per
line to be printed in waveform.

-sdfmsglevel <level>: Specify the level of sdf error mes-
sage. The default value is 0.

-vectored_net : By default, do not expand a vector net.

-scalared_net : By default, always expand a vector net.

-verbose : Display debugging information about the
simulator.

-msgx : Display simulation messages in the com-
patibility mode.

-c : OVIsim compatibility mode.

-acc : Simulate in accelerated mode.

-td <directory> : Specify the working directory of the sim-
ulator.

-lic <file> : Process the licensing from the specified
license file.

-lic_type <100K|50K|25K|2K>: Use the license for the speci-
fied product.
March 1, 2012 34

-vmemd : Specify the directory in which the
virtual memory file should be created.

-dumpd : Specify the directory in which the
dump file should be created.

-help : Display all invocation options.

6.4 Simulation Modes

The simulator can be executed in either batch or interactive
mode. If both simulation modes are specified, the interac-
tive mode will be selected.

The simulator must never be invoked using the UNIX input
redirection such as below:

TOP.sim < InputFile

Doing so will cause the simulator prompt to be printed in an
infinite loop. Instead, input can be specified using a
script file as described in the next section.

6.4.1 Batch Simulation

Batch simulation allows one to simulate a design without
user interaction. The maximum duration of the simulation may
be specified with the invocation option ‘-r <time>’. If the
batch simulation time and the interactive mode option ‘-i’
are not specified, the simulator will also run in batch mode.
When this occurs, the simulator will run until the design has
stabilized.

6.4.2 Interactive Simulation

Interactive simulation allows the user to interact with the
simulator under a command shell. The interface consists of a
set of interactive commands which perform various functions
such as running the simulator, setting breakpoints, display-
ing or modifying signal’s value, etc. All the available
interactive commands are described in Chapter 7 on page 34.

The simulator is started in the interactive mode only if the
invocation option ‘-i’ is specified. It has higher prece-
dence over batch mode.
March 1, 2012 35

6.4.3 Using script files

For convenience, script files are supported to provide an
alternate method of entering interactive commands. A script
file can be specified whenever the simulator is invoked in
the interactive mode. Since all interactive commands are
saved in a simulation key file, ‘finsim.key’, it is possible
to reproduce the last simulation run very easily.

6.4.4 The Save and Restart feature in Super-FinSim.

Super FinSim can save the state of the simulator and restart
thesimulator later on. Both save and restart operations are
performed atvery high speed (e.g. 5-6 seconds for saving and
2-3 seconds forrestarting simulation images of 256MB). This
feature can be used both to recover after a hardware failure,
or to bring the simulation in a certain state, save it and
then restart it on many machines simultaneously in order to
perform various tests with different stimuli starting from
the desired state. This way one does not need to repeat the
part where the simulation is brought in the desired state. As
an example, one may wish to save the state after the boot
cycle is completed and then restart it in order to perform
the various tests.

• Saving a simulation.

FinSim allows the user to save the state of a simulation in
one of two ways. For both cases the user first edits a com-
mand file with all the command line options for the simulator
and runs the simulation using "-cf <file>"

a. Using the $save("suffix") system task.

The user inserts in the Verilog design at the desired time(s)
calls to the system task $save. The simulation is saved in
the file(s) finstate.<suffix> on Linux and <name of original
simulator>.<suffix> on Solaris.

b. Using the interactive command save <suffix>

In the interactive mode the user issues the command save
<suffix>. The simulation is saved in the file(s) fin-
state.<suffix> on Linux and <name of original simula-
tor>.<suffix> on Solaris. To get to the interactive mode,
one can either start the simulation in the interactive mode
from the beginning with the "-i" option (specified in the
command file), or can insert a $stop in the Verilog source
March 1, 2012 36

code or can type a CTRL-C while a batch simulation is run-
ning.

The following notes apply to saved simulations regardless of
how they were saved except where noted.

The simulation state is always saved at the end of the cur-
rent simulation time. If the design has PLI all misctf rou-
tines are invoked with reason 'reason_save'. All of the
user's PLI data structures in memory are saved and restored
automatically by FinSim however, the user is responsible for
saving the state of any file/socket opened using PLI when the
misctf routine is called with reason 'reason_save'.

In the interactive mode, if the <suffix> is omitted, the
state will be saved in finstate.sav on Linux and <name of
original simulator>.sav on Solaris. The system task $save
requires a string as its only argument.

• Restarting a saved simulation.

To restart a saved simulation, the user has to set the envi-
ronment variable FIN_RESTART_ARGS to "+fin_restart+<suffix>
-cf <file>" and call TOP.sim:

for csh/tcsh

#setenv FIN_RESTART_ARGS "+fin_restart+<suffix> -cf <file>"

#TOP.sim

for sh/bash

#set FIN_RESTART_ARGS="+fin_restart+<suffix> -cf <file>"

#export FIN_RESTART_ARGS

#TOP.sim

<suffix> is the suffix of the saved simulation and <file>
contains all command line options for TOP.sim. FinSim allows
the user to provide extra plus arguments when the simulation
is restarted. This is useful for instance when the design is
written such that it generates/applies different test vec-
tors based on one or more plusargs provided at runtime. The
user can save the state of the simulation when the initial-
ization sequence is complete and restart the same saved sim-
ulation multiple times each with different plus arguments
causing the test bench to generate/apply different testvec-
March 1, 2012 37

tors for each run. Please note that in order for plus argu-
ments to be evaluated at runtime, the design must be compiled
with the option +no_plusargs_substitution to finvc. All plus
arguments should be specified in <file>. All other arguments
specified when the simulation is restarted will be ignored
since the ones in the original run have already been evalu-
ated and are therefore part of the saved image.

If the design has PLI all misctf routines are invoked with
reason 'reason_restart'. All of the user's PLI data struc-
tures in memory are restored automatically by finsim, how-
ever the user is responsible for restoring the state of any
file/socket opened using PLI in the initial run when his mis-
ctf routine is called with reason 'reason_restart'.

IMPORTANT: Please note that in order to run a new simulation,
one has to unsetenv FIN_RESTART_ARGS to avoid restarting a
saved one.

6.5 Starting a real time waveform display

Super-FinSim’s simulator can be interfaced directly to a
real time waveform display through a procedural waveform
interface. While the simulator is running, value changes on
traced signals are registered directly to the waveform dis-
play using inter-process communication.

6.6 Simulation output

In addition to the standard output, simulation results are
stored in a log file whose default name is ‘finsim.log’. The
log file can be renamed with the option ‘-log <filename>’ or
by using the Verilog system task $log.

All interactive commands entered during the simulation are
saved in a simulation key file whose default name is ‘fin-
sim.key’. The key file can be renamed with the option ‘-key
<filename>’ or by using the Verilog system task $key.

If the design uses SDF, a log file ‘finsdf.log’ is created to
store the messages produced by the SDF compiler.

6.7 Interrupting the simulator

The simulator can be interrupted with ‘Ctrl-C’ or ‘Ctrl-Z’.
Once interrupted, the simulator enters the interrupted
March 1, 2012 38

interactive mode. Most interactive commands can be executed
in this mode except for ‘run’, ‘monitor’, ‘force’ and
‘release’. The interactive command ‘cont’ can then be used
to continue the simulator.

The simulator also enters the interrupted interactive mode
whenever the Verilog system task $stop is executed.

To distinguish between the interactive mode and the inter-
rupted interactive mode caused by Ctrl-C/Ctrl-Z or with the
Verilog system task $stop, the simulation kernel displays
the interactive prompt using the following convention:

Interactive Mode Simulator prompt

interactive mode scope>
interrupted interactive mode from Ctrl-<key> scope[INTERRUPT]>
interrupted interactive mode from $stop scope[STOP]>

6.8 Terminating the simulator

The simulator terminates when one of the following occurs:

1. The maximum simulation time is reached in batch mode.

2. The simulator has no more events to process.

3. The interactive command ‘quit’ or ‘$finish’ is entered in the interactive mode.

4. The system task $finish is executed from the Verilog source.

5. The user presses the keystroke ‘Ctrl-\’. This option does not apply for the Windows NT
version.

7.0 Super-FinSim Interactive commands

If the simulator is started in the interactive mode, a shell
prompt is provided for entering interactive commands. All
interactive commands must be entered in lower case. Argu-
ments describing signal names must be entered using the
appropriate case as specified in the source code. Other
arguments can be entered in either lower or upper case.

An on-line help facility is available by entering ‘help’ at
the interactive prompt.
March 1, 2012 39

7.1 List of interactive commands

$finish

Terminate the simulation

quit

Terminate the simulation.

build

Build the simulation data structures.

init

Build and initialize the simulation data structures.

run <time>

Simulate for the specified amount of time.

cont

Continue the simulation.

.

Same as cont

script <file>

Execute interactive commands from the specified script file.

pd

Display the simulation data structures.

readmemb <file> <memory>

Read binary data from a file into memory.

readmemh <file> <memory>

Read hexadecimal data from a file into memory.

info <signal>

Display information about a signal.

value <signal>

Display the value of a signal.

display(<format string>, signal)
March 1, 2012 40

display the value of a signal similar to $display.

force <signal> <dboh>

Force a signal permanently to a value

release <signal>

Deactivate a signal that was forced.

setenv <variable> <value>

Set the value of system environment variables.

printenv

Display the value of all system environment variables and the status of the simulator.

time

Display the current simulation time.

version

Display the version of the simulation kernel.

help <command>

Display an on-line help message for the specified interactive command.

cd <scope>

Change the current interactive scope.

ls

Display objects declared in the current scope.

plilist

Display all the registered user defined PLI functions/tasks

log [<file>]

Create a new log file or enable writing to an already open log file.

nolog

Disable writing to the log file.

key [<file>]

Create a new key file or enable writing to an already open key file.

nokey

Disable writing to the key file.
March 1, 2012 41

break <transition> <signal>

Create a break point on a signal value change. A signal transition can be one of the
following: posedge, negedge, tox, toz, change.

break <mode> <time>

Create a time break point. Time break points can be either absolute or relative to the
current time and they occur either at the beginning (abstimebf, reltimebf) or at the end
of the time (abstimeaf or reltimeaf) cycle.

breaklist

Display list of current break points.

breakon [<break_point_number>...]

Enable the specified break points. If no argument is specified, all break points will be
enabled.

breakoff [<break_point_number>...]

Disable the specified break points. If no argument is specified, all break points will be
disabled.

breakclr [<break_point_number>...]

Remove the specified break points. If no argument is specified, all break points will be
removed.

monitor <signal>...

Monitor the specified signals on the waveform display.

monitorall

Monitor all signals on the waveform display.

demonitor [<signal>...]

Terminate monitoring of specified signals on the waveform display.

demonitorall

Terminate monitoring of all signals on the waveform display.

monitoron [<signal>...]

Enable monitoring of all monitored signals on the waveform display

monitoroff [<signal>...]

Disable monitoring of all monitored signals on the waveform display.

history
March 1, 2012 42

Display command line history.

alias

Create or display command aliases.

readmem[bh] <file> <memory> [start_address [finish_address]]

Read values from the specified file into the specified memory. Start address and finish
address are optional.

$dotask <name of task>

Execute a task defined in the Verilog source code

$<user PLI name>[(“argument string”)]

Execute a user PLI. The only argument allowed is a string.

save <suffix>

Saves the simulation state at the end of the current simulation time. The state is saved in
one or more files each of which end with .<suffix>. If the suffix is not specified the
string 'sav' is used as the suffix. If the design has PLI all misctf routines are invoked
with reason 'reason_save'. All of the user's PLI data structures in memory are saved and
restored automatically by finsim, however the user is responsible for saving the state of
any file/socket opened using PLI when his misctf routine is called with reason
'reason_save'. Finsim permits the user to provide extra plus arguments when the
simulation is restarted. This is useful because the design can be written so that it
generates different test vectors based on one or more plus args provided at runtime. The
user can save the state of the simulation when the initialization sequence is complete
and restart the same saved simulation multiple times each with different plus arguments
causing the test bench to generate different test vectors in each run.

7.2 Processing simulation data structures

This section describes the interactive commands that are
used to process the simulation data structures.

7.2.1 Build

The interactive command ‘build’ is used to build the simula-
tion data structures.
March 1, 2012 43

7.2.2 Init

The interactive command ‘init’ is used to initialize the
simulation data structures. The simulation data structures
will be built if they haven’t been built already.

7.3 Running the simulation

This section covers the interactive commands to run the sim-
ulator.

7.3.1 Run

The interactive command ‘run’ is used to run the simulator
for a specific amount of time. The time unit associated with
the value <time> is the smallest time precision in the
design. Whenever ‘~’ is entered as the value of time, the
simulator will run until the design stabilizes.

7.3.2 Cont

The interactive command ‘cont’ is used to resume simulation
which may have been suspended by a user interrupt (Ctrl-C),
execution of the system task $stop, or the encountering of a
breakpoint.

7.4 Handling of simulation scope

When the simulator is interrupted, it displays the current
scope.The default current scope when the simulation begins
is the scope of the first root module.

7.4.1 Cd

The scope in the design hierarchy can be changed with the
interactive command ‘cd’. Like its Unix counterpart, the
symbol ‘.’ represents the current path. The symbol ‘..’ rep-
resents the parent path. The symbol ‘/’ when used by itself
represents the root path. Otherwise, it is used as the hier-
archy separator.

Currently, Super-FinSim only allows the scope to be changed
one level up at a time. Thus the commands below are invalid:

> cd ../../

> cd ../abc
March 1, 2012 44

7.4.2 Ls

The interactive command ‘ls’ is used to display all objects
declared in the current scope..

7.5 Querying of simulation objects

Object names in Super-FinSim are case-sensitive. Therefore,
‘abc’ and ‘ABC’ are considered to be two different objects.
Super-FinSim allows the user to specify the name of a scope
to commands that require signal names. Once located, the
command is applied to all the signals declared in that scope.

For example, if an instance named ‘top.U00’ has two ports ‘A’
and ‘B’, one can display the value of these two ports as fol-
lows:

> value top.U00

This is equivalent as entering the following:

> value top.U00.A

> value top.U00.B

7.5.1 Info

The interactive command ‘info’ is used to display informa-
tion about a signal, including its name, type, range, value,
fanout etc.

7.5.2 Value

The interactive command ‘value’ is used to display the value
of a signal. If the signal is not of type real, the value
will be displayed in binary format. One can change the dis-
play format with the command ‘setenv’.

7.5.3 Force

The interactive command ‘force’ is used to permanently set a
signal to a value during the simulation. The force command
can be deactivated by executing the ‘release’ command.

The signal value entered in the interactive mode has the fol-
lowing DBOH format:

<width><base><value>
March 1, 2012 45

The first argument is a positive integer representing the
width of the DBOH string. The second argument represents the
base of the DBOH string. Valid DBOH bases are D, B, O, and H.
The last argument represents the value of the DBOH string.

Here are some examples of valid DBOH string:

1B1

8HFE

10D25

7.5.4 Release

The interactive command ‘release’ is used to deactivate a
signal that was forced.

7.6 Super-FinSim environment variables

The simulation kernel maintains a few simulation environment
variables during the simulation. They are:

DBOH, ECHO

The simulation environment variable DBOH is used to specify
the format used to display the value of a signal. The default
format is binary (B|b). The user can specify other display
formats including decimal (D|d), octal (O|o) or hexadecimal
(H|h).

The simulation environment variable ECHO is used to deter-
mine whether the simulation output is displayed on the con-
sole or not. The possible values for ECHO are: {ON
|OFF|on|off}, with ON being the default value.

7.6.1 Setenv

The interactive command ‘setenv’ is used to set Super-FinSim
simulation environment variables. The syntax is follows:

setenv <ENVIRONMENT VARIABLE> <VALUE>

7.6.2 Printenv

The interactive command ‘printenv’ is used to display the
value of all system environment variables as well as the sim-
ulator status.
March 1, 2012 46

7.7 Miscellaneous system facilities

Script

The interactive command ‘script’ is used to read and execute
interactive commands from an ascii text file. There should
be only one command per line in the script file. Since it is
possible for one to invoke a script file within a script
file, care must be taken to prevent recursive invocations.

Time

The interactive command ‘time’ displays the current simula-
tion time.

$Finish

The interactive command ‘$finish’ is used to terminate the
simulation. The user can also quit the simulation using the
keystrokes ‘Ctrl-\’ or ‘Ctrl-D’.

Quit

Same as the interactive command ‘$finish’.

Log

The interactive command ‘log’ is used to create a new log
file or enable writing to an already open log file. If a log
file is currently open and the argument is not specified,
that log file will be enabled for writing. Otherwise, the
current log file is closed and a new log file will be cre-
ated.

If there is no open log file and the argument is not speci-
fied, a new log file is created using the default name ‘fin-
sim.log’. Otherwise, a new log file is created using the
specified name.

Nolog

The interactive command ‘nolog’ is used to disable writing
to the log file.

Key

The interactive command ‘key’ is used to create a new key
file or enable writing to an already open key file. If a key
file is currently open and the argument is not specified,
March 1, 2012 47

that key file will be enabled for writing. Otherwise, the
current key file is closed and a new key file will be cre-
ated. If there is no open key file and the argument is not
specified, a new key file is created using the default name
‘finsim.key’. Otherwise, a new key file is created using the
specified name.

Nokey

The interactive command ‘nokey’ is use to disable writing to
the key file.

Pd

The interactive command ‘pd’ is used to display simulation
data structures.

7.8 Simulation Help Facility

Super-FinSim provides an on-line help facility similar to
Unix man pages. This facility is provided through the inter-
active command ‘help’.

Help

The interactive command ‘help’ is used to display an on-line
help message about an interactive command. The syntax is
follows:

help [<command>]

If <command> is not specified, the list of all interactive
commands will be displayed.

7.9 Command history

The interactive command ‘history’ is used to display the
history of interactive commands. To execute the last com-
mand, enter the command ‘!!’. To execute the nth command,
enter ‘!<n>’. When executing the command history, one can
pass additional arguments if needed.

7.10 Command aliasing

Command aliases are used to create abbreviations of commonly
used interactive commands. The interactive command ‘alias’
is used as follows:
March 1, 2012 48

alias Display the list of command aliases

alias <name> Display the value of the command alias <name>

alias <name> <value> Create an alias <name> with the value
<value>.

When executing aliases, one can pass additional arguments if
needed.

8.0 Support for FinSimMath

8.1 Introduction
FinSimMath’s creation was motivated by the need for having
mathematical modeling within the Verilog language. This lan-
guage was designed with the intent that (1) no explicit con-
version functions are necessary, (2) runtime changes of
formats including the number of bits of the various fields
are supported, and (3) data in multi-dimensional arrays are
easy to access globally.

FinSimMath suports a large number of mathematical system
tasks, and provides access to information regarding the
occurrence of overflow, underflow, maximum number of bits
needed, and cummulative error.

FinSimMath is an extension of the IEEE std 1364 Verilog lan-
guage which supports also the types VpDescriptor, VpReg (for
variable precision objects), VpComplex, VpPolar, VpFCom-
plex, and VpFPolar types. Logical, Arithmetic and assignment
operators are defined to operate on all combination of these
types including on arrays and matrixes.

Objects of the variable precison types VpReg, VpComplex,
and VpPolar can have their formats (fixed or floating) and
the sizes of the format fields modifiable at runtime. This
allows for a tight loop in finding optimal formats and sizes
of sub-fields, given various costs based on computation
accuracy, overflow avoidance, quantization noise, power con-
sumption (switching activity), or other resource con-
straints.
March 1, 2012 49

 Global writing to and reading from multi-dimensional arrays
are supported using positional system tasks for each range
within the system tasks $InitM and $PrintM.

A general form of aliasing using positional system tasks for
each dimension of a multi-dimensional array is introduced
with the View as construct, enabling to separate data from
its location.

A rich mathematical environment is available based on a num-
ber of system functions and tasks, including: $VpSin,
$VpCos, $VpTan, $VpCtan, $VpAsin, $VpAcos, $VpAtan, $VpAc-
tan, VpSinh, $VpCosh, $VpTanh, $VpCtanh, $VpAsinh, $VpAcosh,
$VpAtanh, $VpActanh,$VpPow, $VpPow2, $VpLog, $VpLn, $VpAbs,
$VpFloor, $VpHypot, $Fft, $Ifft, $Dct, $Idct, etc.

8.2 Variable Precision Fixed Point and Floating Point Support in Super-
FinSim

8.3 Introduction
This section describes how rational numeric values are associated to registers declared as
variable precision registers (refered heareafter as VP registers), and how those values are
manipulated by a set of predefined functions, and overloaded operators in the Verilog lan-
guage context.

Super-FinSim supports variable-precision fixed-point and IEEE 754/854 radix 2 floating-
point objects, functions, and math operators, using standard Verilog syntax, and custom
Verilog semantic extensions1. Beginning with FinSim 10.0 support for the predefined
types VpReg and VpDescriptor is also provided as a shorter way to declare VP registers
and descriptors. The math operators +, -, *, **, and / can be applied to any combination of
the following operands and results formats: arbitrary-precision fixed-point, arbitrary-pre-
cision floating-point, Verilog integer, Verilog real, Verilog register, and Verilog supported
constants. Trigonometric and hyperbolic (direct and inverse) functions are supported for
any precision. Power, logarithm, and square root operations are also available.

8.4 Values of VP registers
The values associated to VP registers are rational values of the form p/q where p is inte-
ger and q is an integer power of 2. The general form of the associated value is therefore:

p 2 k–⋅

1. A proposal to standardize these Verilog extensions is being prepared for submission to the IEC TC93.
March 1, 2012 50

where both p and k are integers.

The value p is allways encoded using some or all the bit val-
ues of the VP register.

The encoding scheme for p is present in a descriptor that is
associated to the VP register. That descriptor also contains
all or part of the information about the value of the expo-
nent k, whose value is in general given the difference
between two terms k_fix and k_float. The value of k_fix
depends only on information provided in the descriptor, it
is not encoded in the bits of the VP register, and can be
modified only by changing the descriptor. The value of
k_float is encoded using the bits of the VP register and it
is often changed during VP register manipulation.

If the descriptor contains all the information about the
exponent k (meaning that k_float=0 at all times) the associ-
ated values are fixed point values, and the format is a fixed
point format. Otherwise, if there is a field in the VP regis-
ter which encodes k_float using the VP register bit values,
the associated values are floating point values, and the
format is a floating point format. Under special circum-
stances, some combination of bit values in the VP register
represent special values that are not numeric values. Here-
after, when there is no possible confusion we will refer to
the “VP register associated numeric value” as the “numeric
value of the VP register”. A VP register can also be used as
a regular Verilog register and assigned to registers and
nets.

The conventions used to declare a VP register, specify the
encoding of p, the value of k_fix, the encoding of k_float,
the special values and other restrictions are presented in
Section 8.5 on page 51. The set of available functions and
overloaded operations are presented in detail in Section 8.6
on page 55. Conventions about evaluation of expressions con-
taining VP register elements are presented inSection on
page 65. Section on page 65 contains useful examples uisng
the VP register features.

8.5 Specifying VP objects

8.5.1 Introduction

There two kinds of VP data containers: registers and wires.
VP registers contain values and have associated to them
March 1, 2012 51

information regarding the format, number of bits used to by
the various parts corresponding to the given format (e.g.
exponent and mantisa), as well as information regarding
rounding and overflow options. VP wires contain values but
do not contain any information regarding format, rounding or
overflow.

The following four steps are required before using a VP reg-
ister:

Step 1: Declare a VP descriptor

Step 2: Declare a VP register as data holder

Step 3: Set the descriptor information

Step 4: Associate descriptor to data.

The only order constraints between the steps above are that
step 4 should be performed after step 1 and step 2, and step
3 has to be performed after step 1 was performed.

Registers are declared as VP register using the Verilog IEEE
std 1364-2001 attribute construct. The attribute varprec is
used, having 2 possible values: data and descriptor.

Examples:

(* varprec = data *) reg [0:511] in1;

VpReg [0:511] in1;

(* varprec = descriptor *) reg d1[0:1] d1;

VpDescriptor d1;

Objects marked with the varprec attribute set to data or
declared of type VpReg contain numerical values. The infor-
mation regarding the format in which the numerical value is
represented (i.e. the relation between the numerical value
and the bit values of the VP register), as well as the the
information regarding the action to be taken in case over-
flow, or underflow occurs in an operation that assigns to the
given VP register is stored in the descriptor that must be
associated to any VP register.

VP wires do not have a descriptor associated to them. A VP
wire cannot appear in an expression involving more than its
name. VP wires are used in order to pass VP values through
March 1, 2012 52

ports of modules. Wires that are not VP wires are treated as
integers when participating in expressions that are assigned
to a VP object or that contains a VP object. Therefore, in an
assignment to a VP register such as

myVPreg = myWire;

myWire will be considered an integer, whereas if ti were a VP
wire it would be considered to be of the same format and size
as myVPreg as in the following example:

myVPreg = myVPwire;

It is illegal to have myVPwire declared with a size that is
smaller than the necessary number of bits indicated by the
descriptor of myVPreg.

Notes:

i) The size of the register must be chosen such that during
the entire simulation it exceeds the number of bits that are
necessary to represent the VP register value.

ii) The size of the descriptor register has no particular
meaning, however SuperFinsim requires a size of at least two
bits.

A descriptor can be associated to any number of VP registers
using the system task

$VpAssociateDescriptorToData(myVPreg, myVPregDescriptor);

For each VP register there must be exactly one call associat-
ing to it a descriptor. This call must occur in the module in
which the VP register is declared.

8.5.2 Setting the fields of the descriptor

The various fields of a descriptor are integers which can be
can be modified at runtime any number of times using the sys-
tem task $VpSetDescriptorInfo(<myVPdescriptor>,<size1>,
<size2>, <format>, <roundingOpt>, <overflowOpt>, <miscOpt>).

8.3.2.1 Setting Format and Sizes

The format field can have the following values:

1 - indicates two’s complement
March 1, 2012 53

2 - indicates sign magnitude

3 - indicates floating

4 - indicates floating with no denormals

In case the format is two’s complement size1 and size2, if
they are both positive, represent the number of bits of the
integer part and the number of bits of the fractional part
(refered to also as decimal part) respectively. It is ille-
gal for both sizes to be negative. If one is negative the
part to which it corresponds (integer or fractional) has
zero bits representing it and the other part is represented
by a number of bits equal to the sum of the absolute values
of the two sizes, with the restriction that no information
can be stored in the bits corresponding to the negative size
which are located at the border to the other part (i.e. if
the integer size is negative the most significative -size1
bits of the fractional part will not be used to store infor-
mation even if an overflow must be reported. Similarly, in
case size2 < 0 the least significative -size2 bits of the
integer part will not contain any information even if an
underflow must be reported.

In case the format is either floating or floating with no
denormals the two sizes must be positive, with size1 repre-
senting the number of bits of the sign and the exponent and
size2 representing the number of bits of the mantisa.

Notes:

i) negative sizes are not supported in version 8 and will be
supported in version 9.

ii) sign magnitude format is not supported in version 8 and
will be supported in version 9.

8.3.2.2 Setting Rounding Option

1 - indicates rounding to nearest integer, with approaching
-infinity in case of a tie.

2- indicates rounding to nearest integer, with approaching
+infinity in case of a tie.

3- indicates rounding to nearest integer, with approaching
zero in case of a tie.
March 1, 2012 54

4 - indicates that a simple truncation will be performed

5 - indicates rounding to zero

6 - indicates rounding to +infinity for positive values and
to -infinity for negative values

7 - indicates rounding to -infinity

8 - indicates rounding to +infinity

8.3.2.3 Setting Overflow Option

1 - indicates saturation, i.e. in case of an overflow the
value will keep the correct sign and the maximum possible
value.

2 - indicates wrapping around, i.e. in case of an overflow
the value will be the remainder of unrepresentable value
divided by the maximum representable value plus one unit.

8.5.3 The Default Descriptor

The default descriptor contains the same information as any
descriptor. There is no explicit default descriptor. The
implicit default descriptor may have its various fileds:
size1, size2, format, rounding option, overflow option,
underflow option set at runtime via the system task $VpSet-
DefaultDescriptorInfo.

The information stored in the default descriptor influences
the values of the descriptors associated to temporary VP
registers needed to evaluate complex expressions (e.g.
involving more than one arithmetic operation).

8.6 VP register manipulation

8.6.1 Simple Assignments toVP registers

8.6.1.1 Assigning Constants to VP registers

Integer literal constants can be assigned to VP registers as
in the exmple below:

myVPreg = 23;
March 1, 2012 55

Real literal constants can be assigned to VP registers as in
the example below:

myVPreg = 2.3; or myVPreg = 2.3e+0;

However, note that real literals are first converted to the
Verilog real (which in FinSim uses the 64 bit double repre-
sentation) and then converted to the format indicated by the
descriptor. This may lead to a loss of information. In order
to avoid any loss of precision, one can use the following:

myVPreg1 = 23;

myVpreg = myVPreg1 / 10;

The literal constant is transfomed into a temporary VP reg-
ister having a size such that as little data as possible is
lost when placing the value of the temporary VP register into
the left hand side VP register.

When the value of the temporary VP register is transfered
into the left hand side of the assignment its underflow or
overflow implicit signals may be set with the number of bits
which if added to the mantisa/fractional part or the expo-
nent/integer part respectively would prevent the condition
for underflowing or overflowing from occuring.

8.6.1.2 Assigning single VP register to VP register

The value stored in the VP register on the rhs will be trans-
fered into the VP register on the lhs.

If the number of bits of the mantisa or fractional part of
the VP register on the lhs are insufficient to store the
value stored in the VP register on the rhs then rounding will
occur according to the rounding option of the descriptor
associated to the VP register on the lhs.

If the value stored in the VP register on the lhs is zero and
the value stored in the VP register of the rhs is not zero
then the underflow implicit register of the VP register on
the lhs will be set to the number of bits which if added to
the exponent or the fractional part of the VP register of the
lhs would prevent the underflow condition from occuring.

If the value stored in the VP register on the rhs cannot be
stored in the VP register on the lhs because either the expo-
nent or the integer part do not have enough bits then the
March 1, 2012 56

overflow implicit register of the VP register on the lhs will
be set to the number of bits which if added to the exponent
or to the integer part of the VP register on the lhs would
prevent the overflow condition from occuring.

8.6.1.3 Assigning single VP wire to VP register

The number of bits of the VP wire must be at least as large
as the number of bits necessary to represent any value in the
format and sizes present in the descriptor of the VP regis-
ter. The execution of the assignment will result in copying
from the least significative portion of the VP wire into the
least significative portion of VP register a number of n
bits, where n is the sum of the two sizes present in the
descriptor of the VP register, i.e the number of bits neces-
sary to represent any number in the format and with the sizes
present in the descriptor of the VP register.

Underflow or overflow conditions cannot occur during the
execution of such an assignment.

8.6.2 Arithmetic Operators operating on VP registers

8.6.2.1 Type of Operands

The type of operands may be: integer, reg, wire, VP register
with two’s complement format, VP register with floating for-
mat, VP register with floating no denormals format.

8.6.2.2 Operators

List of binary arithmetic operators: +,-,*,/, **

List of unary arithmetic operators: +,-

8.6.2.4 Brief description

The operands are converted into VP registers if they are not
VP registers already and then the operation is performed
such that with the exception of division there is no loss of
data in the result. In case of division only the n most sig-
nificant bits of the fractional part are kept, where n is
number of bits of the fractional part of the final result
plus three bits, which are used for rounding. The descriptor
of the final result is obtained from the right hand side in
case of expressions having only one operator or in a manner
described later in this chapter for more complex expres-
sions.
March 1, 2012 57

Once the operation is performed the value of the result is
converted to the format and size of the final result.

The underflow implicit signal of the final result is set when
the final result has the value zero while the result of the
operation with as little loss of data as possible contained a
non-zero value. The underflow signal, which is of type inte-
ger is set to the number of bits that if added to the frac-
tional part or mantisa of the final result would have
prevented the underflow condition from occuring.

The overflow implicit signal of the final result is set when
the result of the operation has a value that cannot be stored
in the final result because either the exponent (in case of a
floating format of the final result) or the integer part (in
case of a fixed point format of the final result) has an
insufficient number of bits. The overflow implicit signal
which is of type integer will be set to the number of bits
which if added to the exponent of iinteger part would have
prevented the condition for overflow from occuring.

8.6.2.5 Example of use:

myVPreg = myVPr1 + myVPr2;

myVPreg = myVPr1 / myVPr2;

8.6.2.6 Restrictions on the power operator (x**a)

a) In case a > 0 x may have any value.

b) In case a < 0 x may only have a value of the form 1/2p+1
where p is an integer.

c) If a == 0 and x == 0 Super FinSim will arbitrarily report
an overflow and will also produce a warning providing all the
available information: file, line, values of a and x.

d) If a == 0 and x != 0 the result will be 0

e) If a > 1 or a < -1 Overflow may be produced if x > 1 and x
is large enough.

f) If a > 1 or a < -1 Underflow may be produced is x < -1 and
-x is large enough

g) All other usages will be prompted with an error mesage and
the simulation will terminate.
March 1, 2012 58

8.6.2.7 Example of use of power operator

myVPreg = a ** x;

8.6.3 Logical Operators involving VP registers

The type of operands may be: literal integer, literal real,
integer, reg, wire, VP register with two’s complement for-
mat.

The expression returns a one bit which has the value of 1 in
case the condition is met and returns 0 otherwise.

The supported logical operators are: < (less than), >
(greater than), <= (less or equal), >= (greater or equal), ==
(equal), != (not equal).

Note: in version 8_0_6 only == and != support all types of
operands, whereas <, >, >=, <= do not support real literals
or VP registers with floating format.

8.6.4 Assignments to non-VP objects

Any assignment of a VP register to a non-VP object will move
the bit values representing the value of the VP object to the
non VP object with the bits of the second part (fractional or
mantisa depending on the format) being copied to the least
significant part of the target. Any information related to
the descriptor will not be passed to the non-VP object.

Asignments in which VP registers are not referenced at all
are governed by the rules of Verilog IEEE 1364-2001.

8.6.5 Trigonometric Direct and Inverse Functions

8.6.5.1 List of Functions

$VpSin, $VpCos, $VpTan, $VpCtan, $VpAsin, $VpAcos, $VpAtan,
$VpActan

8.6.5.2 Domain of arguments and Range of returned values

These functions accept as argument an angle in radians
(direct functions) or a real value. The argument can be in
any of the following formats: VP reg twos complement, inte-
ger, real, literal integer, literal real, reg, wire.
March 1, 2012 59

The return value may be any VP register supported format.

The ideal result must be within 1 ulp of the correctly
rounded result or 2**(-127) whichever is higher, unless
either overflow or underflow occur.

TABLE 1.

Function Domain Range
$VpSin (-inf, +inf) [-1, 1]
$VpCos (-inf, +inf) [-1, 1]
$VpTan (-inf, +inf) (-inf, +inf)
$VpCtan (-inf, +inf) (-inf, +inf)
$VpAsin [-1, 1] [-pi/2, pi/2]
$VpAcos [-1, 1] [0, pi]
$VpAtan (-inf, +inf) [-pi/2, pi/2]
$VpActan (-inf, +inf) (-pi/2, 0) U (0, pi/2)

8.6.6 Hyperbolic direct and Inverse Functions

8.6.6.1 List of Hyperbolic Functions

$VpSinh, $VpCosh, VpTanh, $VpCtanh, $VpAsinh, $VpAcosh,
$VpAtanh, $VpActanh

8.6.6.2 Arguments and returned values

These functions accept as argument an angle in radians
(direct functions) or a real value (inverse functions). The
argument can be in any of the following formats: VP reg twos
complement, integer, real, literal integer, literal real,
reg, wire.

The return value may be any VP register supported format.

The ideal result must be within 1 ulp of the correctly
rounded result or 2 **(-127) whichever is higher, unless
either overflow or underflow occur.

TABLE 2.

Function Domain Range
$VpSinh (-inf, +inf) (-inf, +inf)
$VpCosh [1, +inf) [1, +inf)
March 1, 2012 60

8.6.7 Functions returning universal constants

8.6.7.1 $E ($VpGetE has been deprecated)

Returns the value of e (i.e. 2.72...) with 128 bits for the
fractional part or as much precision as fits in the vp regis-
ter that is on the lhs.

8.6.7.2 $Pi ($VpGetPi has been deprecated)

Returns the value of Pi (i.e. 3.14...) with 128 bits for the
fractional part or as much precision as fits in the vp regis-
ter that is on the lhs.

8.6.7.3 $EM ($VpGetEM has been deprecated)

Returns the value of Euler-Mascheroni (i.e. 0.57...) with 17
digits of precision or as much precision as fits in the vp
register that is on the lhs.

8.6.8 Logarithm and Exponential Functions

8.6.8.1 $VpLn

Returns the logarithm in base e (natural logarithm) in the
format and precision of the lhs.

Example: $VpLn($VpGetE) = 1;

8.6.8.2 $VpExp

Returns e**x where x is the argument passed as input, whith
as much precision as it can be stored in the lhs..

Example: $VpExp($VpLn($VpGetE())) == $VpGetE();

8.6.8.3 $VpSqrt

$VpTanh (-inf, +inf) (-1, 1)
$VpCtanh (-inf, 0) U (0, +inf) (-inf, -1) U (1, +inf)
$VpAsinh (-inf, +inf) (-inf, +inf)
$VpAcosh [1, +inf) [0, +inf)
$VpAtanh (-1, 1) (-inf, +inf)
$VpActanh (-inf, -1) U (1, +inf) (-inf, 0) U (0, +inf)

TABLE 2.

Function Domain Range
March 1, 2012 61

Example: $VpSqrt(a*a) == a;

8.6.8.4 $VpLog

Returns the logarithm in base 10 of the input argument.

Example: $VpLog(100) == 2;

8.6.8.5 $VpPow

This function has two arguments a and x and returns a**x.

Example: $VpPow(-10000000, 1.0/7.0) == -10.0;

8.6.9 Other Functions accepting VP registers as operators

8.6.9.1 $VpPow2

Accepts one argument a and returns 2**a. It is more efficient
than using 2**a.

8.6.9.2 $VpCeil

Returns the integer part of the value plus or minus one
depending on whether the value is positive or negative.

8.6.9.3 $VpFloor

Returns the integer part of the value.

8.6.9.4 $VpGetExp

Accepts as input a vp register in floating point format and
returns the exponent into a normal verilog register with
sufficient bits.

8.6.9.5 $VpSetExp

Accepts as input a normal verilog register, checks that the
lhs is a vp register with floating point format and sets the
value of the exponent of the lhs to the value of the input.

8.6.9.6 $VpGetMant

Accepts as input a vp register in floating point format and
returns the mantissa into a normal verilog register with
sufficient bits.

8.6.9.7 $VpSetMant
March 1, 2012 62

Accepts as input a normal verilog register, checks that the
lhs is a vp register with floating point format and sets the
value of the mantissa of the lhs to the value of the input.

8.6.9.8 $VpAbs

Returns the absolute value of the argument.

8.6.9.9 $VpHypot

Accepts two arguments a and b, which can be literal integers,
literal reals, integer, wire, Verilog registers, VP regis-
ters in two’s complement or VP registers in floating point
fomat.

The returned value is $VpSqrt(a*a + b*b).

8.6.10 Using Special Condition Signals/Flags of VP registers

8.6.10.1 Overflow

When an overflow occurs while assigning a value to a VP reg-
ister named MyVPreg, an implicit register named
MyVPreg_Overflow is set to a value equal to the number of
bits which if added to the exponent or integer part of the VP
register would have prevented the overflow from occuring if
such a number exists or an arbitrary number greater than zero
otherwise.

8.6.10.2 Underflow

When an underflow occurs while assigning a value to a VP reg-
ister named MyVPreg, an implicit register named
MyVPreg_Underflow is set to a value equal to the number of
bits which if added to the mantissa or fractional part of the
VP register would have prevented the underflow from occuring
if such a number exists or an arbitrary number greater than
zero otherwise.

8.6.11 Assigning VP registers to verilog registers

The assignment is governed by normal verilog rules. The VP
register is considered a verilog register for the purpose of
such an assignment.
March 1, 2012 63

8.6.12 Assigning verilog registers to VP registers

The assignment must be perfomed with the system function
$VpCopyReg2Vp. Also, please note that in normal usage the
bits stored in the register passed as argument to the system
function must correspond to the bits resulting from an
assignment of a VpReg having the same format and size of
fields as the VpReg on the left hand side of the assignment
of the system task. Only in such a case the result is easy to
predict, e.g.:

reg [0:30] r;
VpReg [0:30] a;
VpReg [0:30]b;
VpDescriptor d;

initial begin
.......
 $VpAssocDescriptorToData(a, d1);
 $VpAssocDescriptorToData(b, d1);
 a = 3.0;
 r = a;
 b = $VpCopyReg2Vp(r);
end

The value stored in b will be 3.0.

Restriction: note that in the current implementation of Fin-
SimMath assinments of verilog registers to VpReg using
$VpCopyReg2Vp does not work in case the VpReg is an element
of an array. The workaround is to use a temporary variable.

8.6.13 Assigning Verilog Real to Verilog registers

This assignment is governed by Verilog rules, namely the
integer part of the value of the real is assigned to the Ver-
ilog register and it is truncated if not enough bits are
available in the Verilog register.

If one is interested in storing the exact sequence of bits of
the representation of the value stored in the Verilog real,
one can use the system function $VpFPkCopyFl2Reg or
$VpFCopyFl2Reg. The first one is more efficient but the
returned value cannot currently be displayed. It can only be
used by $VpFPkCopyReg2Fl. The result returned by
$VpFCopyFl2Reg can be displayed by the standard Verilog
mechanisms ($display, $monitor, etc.). A result obtained via
$VpFPkCopyReg2Fl must be converted back to a real by using
March 1, 2012 64

the function $VpFPkCopyFl2Reg and a result obtained via
$VpFCopyFl2Reg must be converted back to a real by using the
function $VpFCopyReg2Fl.

8.6.14 Displaying VP register values

The $display and $monitor system tasks available in Verilog
support the following additional formats:

%y: displays the value of VP registers with twos complement
format with a decimal point separating the integer and frac-
tional parts, e.g. 72.073, and VP registers with floating
point formats with the same format as the display of Verilog
reals, e.g. 2.5e-1 representing the same value as 0.25.

%k: displays the value of VP registers in binary format with
the bits in the following order depnding on the fomat indi-
cated by the associated descriptor:

i) floating or floating without denormals: sign, exponent,
mantissa, where sign is displayed as +/-, and exponent is
separated from mantissa by a dot.

ii) two’s complement: integer part, fractional part sepa-
rated by a dot.

%p: displays the value of VP registers in hex format.

8.6.15 I/O of VP registers

I/O is not supported in FinSim 8.x for VP registers. However,
by using assignments to and from Verilog registers and using
Verilog 2001 I/O for Verilog registers, I/O can be performed
for VP registers, albeit in an indirect way.

8.6.16 Plotting data

The Super FinSim distribution cantains in demo/demo_vp as an
example fft_plot.v which performs the fft of an input vector
and produces a text file which can be displayed by ptplot
from UC Berkeley and it represents the magnitude vs fre-
quency curve of the fft result.

8.6.15.1 $VpPtPlot

One can also use the system task $VpPtPlot which produces a
text file which can be displayed by ptplot. It can display
March 1, 2012 65

several curves on hte same image. $VpPtPlot accepts the fol-
lowing arguments:

1) Name of the result file.

2) Nr of different curves to be ploted on one image.

3) the double of the distance between the projection on the
first dimension of two consecutive point.

 4) Title to be displayed as the headder of the image.

5) The total span of the the first dimension, i.e. the dif-
ference betoween the fist coordinates of the last and first
points to be represented.

6) Label of the first dimension

7) Label of the second dimension

8) two dimensional array of values to be ploted. Each row
represents one curve to be plotted.

9) The remaining arguments represent the labels of the dif-
ferent curves to be plotted. FinSim version 10_05_29 sup-
ports only up to three different curves on one image.

An example of usage of $VpPtPlot is given below:

 $VpPtPlot("standalonePlotMLSample.txt", 2, h, "Tennisball
(0.057kg, 0.032m) Force pushing the wall)", total_time,
"Time (ms)", "Total Force(N)", 0, nr_slices, ar_f_total,
"10m/s", "30m/s");

8.6.15.1 $Flot

One can also use the system task $Flot which produces a text
file which can be displayed by Flot. In order to work one has
to download finfloat.tgz from Fintronic’s ftp site and unzip
it and untar it in the directory pointed by the environment
variable FINTRONIC.

 It can display several curves on the same image and supports
zoom in and out. $Flot accepts the following arguments:

1) Name of the result file.

2) Nr of different curves to be ploted on one image.
March 1, 2012 66

3) the distance between the projection on the first dimen-
sion of two consecutive points.

 4) Title to be displayed as the headder of the image.

5) Label of the first dimension

6) Label of the second dimension

7) two dimensional array of values to be ploted. Each row
represents one curve to be plotted.

8) The remaining arguments represent the labels of the dif-
ferent curves to be plotted. FinSim version 10_05_67 sup-
ports only up to eight different curves on one image.

An example of usage of $Flot is given below:

 $Flot("test.html", 2, h/2, "Tennisball (0.057kg, 0.032m)
Force pushing the wall)", "Time (ms)", "Total Force(N)", 0,
nr_slices, ar_f_total, "10m/s", "30m/s");

8.7 Cartesian and Polar types

These predefined types are added to Verilog by the FinSim-
Math extension. Objects of these types may be elements of
multi-dimensional arrays, may be operands of arithmetic
operators and may be arguments of various system functions
and tasks. Any reference to $I represents a reference to a
complex number in cartesian representation having its .Re
field equal to zero and its .Im field equal to one.

8.7.1 Type VpComplex

This type consists of two fields of type VP register named
“Re” and “Im”. Objects of this type must be associated to a
descriptor before being used. The two fields represent car-
tesian co-ordinates and are treated as such by the operators
operating on them as well as by the system tasks and func-
tions to which they are provided as arguments.

Objects of this type have associated underflow and overflow
registers, which are updated at the time new values are
placed in them.
March 1, 2012 67

8.7.2 Type VpPolar

This type consists of two fields of type VP register named
“Mag” and “Ang”. Objects of this type must be associated to a
descriptor before being used. The two fields represent polar
co-ordinates and are treated as such by the operators oper-
ating on them as well as by the system tasks and functions to
which they are provided as arguments.

Objects of this type have associated underflow and overflow
registers, which are updated at the time new values are
placed in them.

8.7.3 Type VpFComplex

This type consists of two fields of type real named “Re” and
“Im”. The two fields represent cartesian co-ordinates and
are treated as such by the operators operating on them as
well as by the system tasks and functions to which they are
provided as arguments.

8.7.4 Type VpFPolar

This type consists of two fields of type real named “Mag” and
“Ang”. The two fields represent polar co-ordinates and are
treated as such by the operators operating on them as well as
by the system tasks and functions to which they are provided
as arguments.

8.7.5 Operators on Cartesian and Polar types

The following operators are supported in conjunction with
Cartesian and Polar types: +, -, *, /, **, =., == and !=.

Any Cartesian or Polar type may be assigned to any other car-
tesian or polar type without using explicit conversion func-
tions. The operator = is used for assignment.

Expressions invloving Cartesian or Polar types may be part
of hierarchical expressions. contain at most one operator
and may contain only operands that are of type Cartesian or
Polar. Other kind of expressions must be broken down into
simple expression having the property described above.
March 1, 2012 68

8.8 Operations on Multi-dimensional arrays

Multi-dimensional arrays may have elements of one of the
following types: integer, reg, real, VpReg, VpComplex,
VpPolar, VpFComplex, and VpFPolar.

8.8.1 Populating Multi-dimensional arrays with values

Multi-dimensional may have values placed in them via: (1)
element by element assignements, (2) assignments of aggre-
gated values, (3) assignment of another multi-dimensional
array with compatible elements and exacly the same number of
dimensions and the same size on each dimension and (4) the
$InitM system task.

8.8.1.1 Element by element assignment

This can be achieved using standard Verilog constructs for
loops and multi-dimensional array reference. For referencing
Cartesian or Polar fields, System Verilog syntax is used.
For example:

VpFPolar myFP[SIZE-1:0][SIZE-1:0];
for (i = 0; i < SIZE; i = i + 1)
 begin
 myFP[i]j].Mag = 1.0;
 myFP[i][j].Ang = 0.0;
 end

8.8.1.2 Assignement of aggregated values

This can be achieved using standard System Verilog construct
for aggregate assignment. For example:

VpFPolar myFP[SIZE-1:0][SIZE-1:0];
myFP = {{1.0, 0.0}, ...{1.0, 0.0}}

where “...” represents the repetion of {1.0, 0.0} as necces-
sary to cover the entire matrix.

8.8.1.3 Assignment of another multi-dimensional array

This can be achieved using an assignement statement between
two multi-dimensional arrays having the same number of
dimensions and same size on each dimension and having com-
patible types. Types are compatible automatic conversions
are supported between them.
March 1, 2012 69

Types real and VpReg are compatible with each other and types
VpComplex, VpPolar, VpFComplex, and VpFPolar types are com-
patible with each other.

An example of assignment of simple identifiers representing
compatible multi-dimensional arrays is provided below:

VpComplex myC[SIZE-1:0][SIZE-1:0];
VpPolar myP[SIZE-1:0][SIZE-1:0];
...
myP = myC;

8.8.1.4 $InitM system task

The $InitM system tasks accepts two or three arguments,
depending on whether the the elements of the multi-dimen-
sional array are scalars or of a Cartesian or Polar type. The
first argument is the name of the multi-dimensional array to
be populated. For example:

VpComplex myC_Mat[SIZE-1:0][SIZE-1:0];
VpPolar myP_Mat[SIZE-1:0][SIZE-1:0];
real myR_Mat[SIZE-1:0][SIZE-1:0];
$InitM(myP, 1.0, 0.0);
$InitM(myC, 1.0, 0.0);
$InitM(myR, 1.0);

Note that the second and third arguments represent any valid
scalar expressions. These expressions may also contain the
allowable positional system functions $I1, $I2, $I3, $I4,
and $I5 each corresponding to the corresponding dimension of
the multi-dimensional array.

The dimensions are counted from the left in the declaration
of the multi-dimensional array and the counting starts with
1.

A positional system function is allowable if the correspond-
ing multi-dimensional array has the necessary number of
dimensions.

Each positional system function returns the current index on
the given dimension at the time of evaluation of the expres-
sion. Therefore the myR[3][4] will receive the value of the
expression where any occurence of $I1 is replaced by 3 and of
$I2 by 4.

The example below places in myRT the transposed of myR:
March 1, 2012 70

real myR[SIZE-1:0][SIZE-1:0];
real myRT[SIZE-1:0][SIZE-1:0];
$InitM(myRT, myR[$I2][$I1]);

8.8.2 Viewing elements of a multi-dimensional array as part of a different structure

8.8.2.1 The View - as declaration that can be used for both
reading and writing

The syntax of the View declarations that may be used for both
reading and writing of objects is

View <multi_dim_array_declaration> as
 <multi-dim_arrray_selection>
The expressions representing the index in each of the dimen-
sions of the <multi-dim_arrray_selection> may contain posi-
tional system functions. These functions are replaced with
the corresponding indexes in the references to the view.

For example:

real myR[SIZE-1:0][SIZE-1:0];
View real myRT[SIZE-1:0][SIZE-1:0] as myR[$I2][$I1];

Any reference to myRT[i][j] refers to myR[exp1][exp2] where
exp1 and exp2 are the results of evaluating the expressions
in the view declaration with $I1 replaced by i and $I2
replaced by j.

.8.8.2.2 The View - as declaration that can be used only for
reading

If the View declaration is used only for reading then the
 <multi-dim_arrray_selection> may be replaced with a general
expression. Therefore, The syntax of the View declarations that may be used for
reading is:

View <multi_dim_array_declaration> as
 <expression_with_positional_system_tasks>

This feature is first supported in version 10.0.

8.8.3 Displaying Multi-dimensional Arrays

8.8.3.1 $display and $monitor system tasks
March 1, 2012 71

Each scalar element of a multi-dimensional array may be dis-
played with the $monitor and $display system tasks.

8.8.3.2 $PrintM system task

Multi-dimensional arrays may be displayed globally using the
$PrintM system task. The first argument of this task is the
name of the multi-dimensional array to be displayed. The
other argument indicates in quotes the format in which each
field of the elements of the multi-dimensional array are to
be displayed.

Note: this mechanism works only for multi-dimensional arrays
having as elements scalars or a record of scalars, which is
the case for the currently supported types: real, reg, inte-
ger, VpReg (VP Register), VpComplex, VpFComplex, VpPolar,
and VpFPolar.

 Eaxample:

real myR_Mat[SIZE-1:0][SIZE-1:0];
$PrintM(myR_Mat, “%e”);

8.8.3.3 $PrintLine and $PrintCol

A line or a column of a two dimensional array may be dis-
played globally using the $PrintLine or $PrintCol system
tasks, respectively. The first argument of these tasks is
the name of the two-dimensional array. The other argument
indicates the line or column respectively. The format is not
selectable. For elements of type real it is %e and for ele-
ments of type VpReg it is %y;

The type of elements can be: real, reg, integer, VpReg (VP
Register), VpComplex, VpFComplex, VpPolar, and VpFPolar. For
FinSim versions prior to version 11.0 only two-dimensional
arrays of type VpReg and type real may be provided as first
argument to these functions.

 Eaxample:

real myR_Mat[SIZE-1:0][SIZE-1:0];
$PrintLine(myR_Mat, 1);

8.8.3.2 $DispM system task
March 1, 2012 72

Multi-dimensional arrays may be displayed globally using the
$DispM system task. The first argument of this task is the
name of the multi-dimensional array to be displayed. The
other argument indicates in quotes the format in which each
field of the elements of the multi-dimensional array are to
be displayed. If the second argument is omitted “%e” is
assumed. In versions prior to 11.0 only one argument can be
provided to $DispM and it has to be a matrix with elements of
type real.

 Eaxample:

real myR_Mat[SIZE-1:0][SIZE-1:0];
$DispM(myR_Mat);

8.8.4 Norms and Distances

Norms and Distances are system functions returning a real
value.

8.8.4.1 $VpDistAbsMax(M1, M2);

M1 and M2 are matrices having the same number of elements.

This system function returns the maximum of the absolute
values of the differences between all elements of the two
matrices having the same indexes.

8.8.4.2 $VpDistAbsSum(M1, M2);

M1 and M2 are matrices having the same number of elements.

This system function returns the sum of the absolute values
of the differences between all elements of the two matrices
having the same indexes.

8.8.4.3 $VpNormAbsMax(M1);

This system function returns the maximum absolute value of
the all elements of the matrix M1.

8.8.4.4 $VpNormAbsSum(M1);

This system function returns the sum of the absolute values
of the all elements of the matrix M1.
March 1, 2012 73

8.8.4.5 $VpNormAbsRMS(M1);

This system function returns the square root of the sum of
the power of two of all elements of the matrix M1.

8.8.5 Sparse Matrices

A two-dimensional array may be declared at runtime as a
sparse matrix, using the system task $ToSparse. This task
accepts as argument the name of a two dimensional array.

 Sparse matrices store zeroes more efficiently and opera-
tions such as: storing, arithmetic operations, printing are
are performed faster.

Sparse matrices can be passed as aruments to $PrintLine and
$PrintCol.

Sparse matrices can be passed as arguments to system tasks
that perform Norms and Distances.

Sparse Matrices can have their non-zero elements read more
efficiently using the boolean system functions $SpReadNext-
NzElemInLine and $SpReadNextNzElemInCol.

These functions return true if they could find a non-zero
element positioned after the current element.

Example:

 found = $SpReadNextNzElemInLine(M, lin, col, idx, value);
where M is a sparse matrix, lin and col are the line and col-
umn of the current element, idx is an handle associated with
a certain element in the sparse matrix and value is the value
of the next element. Note that col may change value during
the call since lin/val before the call point to a certain
element and after the call lin/val point to the next non-zero
element on the same line.
 found = $SpReadNextNzElemInCol(M, lin, col, value); where
M is a sparse matrix, lin and col are the line and column of
the current element and value is the value of the next ele-
ment. Note that lin may change value during the call since
lin/val before the call point to a certain element and after
the call lin/val point to the next non-zero element on the
same column.
March 1, 2012 74

Arithmetic operations can be performed on sparse matrices,
provided that all operands are sparse matrices.

8.8.6 Fast Fourier Transform: $VpFft and $VpIfft

These tasks perform the Fast Fourier Transform and its
inverse, respectively.

The first argument is the name of a one dimensional array of
reals upon which the transformation is performed in place.

The second argument is the first address within the one
dimensional array.

The third argument is the number of consecutive elements
that are used during the FFT transformation.

Note that the first argument may be a view declaration and
hence the elements need not be actually consecutive in mem-
ory. They must be only consecutive in the object or the view
being passed as argument.

Example:

real myR[SIZE-1:0];
View real myR_even[SIZE/2-1:0]as myR[2*$I1];
$VpFft(myR_even,0, SIZE/2);
$PrintM(myR_even, “e”);

8.8.7 Discreete Cosine Transform: $VpDct and $VpIdct

These tasks perform the Discreete Cosine Transform and its
inverse, respectively.

The first argument is the name of a one dimensional array of
reals upon which the transformation is performed in place.

The second argument is the first address within the one
dimensional array.

The third argument is the number of consecutive elements
that are used during the DCT transformation.

Note that the first argument may be a view declaration and
hence the elements need not be actually consecutive in mem-
March 1, 2012 75

ory. They must be consecutive in the object or the view being
passed as argument.

Example:

View real myR_even[SIZE/2-1:0]as myR[2*$I1];
$VpDct(myR_even,0, SIZE/2);
$PrintM(myR_even, “e”);

8.8.8 Linear Differential Equations

8.8.8.1 $VpLODE

The i-th equation of a system of linear differential equa-
tions can be represented as:
 Cin*Yi(n)+ ...Ci0*Yi(0) = Fi, where Cin is the coefficient
of the n-th derivative of the i-th variable, and Fi is the i-
th external function.

Linear Differential equations can be solved using the system
task $VpLODE, which accepts the following parameters:
1) maximum order of derivatives appearing in hte equations
to be solved.
2) number of equations to be solved
3) double of the distance between two consecutive values of
the solution of the equation.
4) two dimensional array storing the solution, where the
first dimension must be larger than the number of equations.
Note that the original value must be provided before the call
to $VpLODE.
5) two dimensional array storing the coefficients of the
system of equations.
6) Two dimensional array storing the external functions.
7) Two dimensional array storing the derivatives of the
solution. Note that this is a view of a three dimensional
array: one dimension for equations, one dimension for the
order of the derivative, and one dimension for the values of
each derivative. However, the system task $VpLODE accepts a
two dimensional array, so this two dimensional array will
store in groups of n-1 lines the n-1 derivatives of the of
each variable of the solution.

 8.8.8.2 Finding polinomial given the roots
March 1, 2012 76

pol = Poly(roots); Note that the argument must be of a com-
plex type and the result an array of scalars real or variable
precision.

8.8..8.3 Finding roots given a polinomial.;

r = $Roots(pol);

8.8.8.4 Finding characteristic polynomial of a square matrix

pol = $CharPol(M);

8.8.8.5 Finding the rank of a matrix

rank = $Rank(M);

8.8.8.6 Finding the eigenvalues of a matrix

eval = $Eig(M);

8.8.8.7 Finding the eigenvalues and eigenvactors of a matrix

eval = $Eig(M, evect);

8.8.8.8 Finding the feedback matrix K that places the poles
of the closed loop system as indicated by the complex vector
r.

K = $Place(A, B, r);

8.8.8.9 Finding the solution of a system of linear system of
differential equations of order one. The result is placed in
y and the state variables are in x.

y = $LSim(A, B, C, D, u, t0, dt, x);

8.8.8.10 Finding the dc-gain of a linear system

dcg = $dcgain(A, B, C, D);

8.8.9 Numeric Differentiation and Integration

8.8.9.1 Numeric Differentiation: $VDif(1-DM, sampling step,
nr of samples, 1-DMRes)

The numeric integration function accepts the following argu-
ments:
March 1, 2012 77

1) a one dimensional array storing the values of the input
function at the various sampling points.

2) the value of the distance between two consectutive sam-
pling points.

3) nr of sampling points

4) a one dimensional array containing the result.

8.8.9.2 Numeric Integration: $VInt(1-DM, sampling step, nr
of samples, 1-DMRes)

The numeric integration function accepts the following argu-
ments:

1) a one dimensional array storing the values of the input
function at the various sampling points.

2) the value of the distance between two consectutive sam-
pling points.

3) nr of sampling points

4) a one dimensional array containing the result.

8.8.10 Symbolic Computation

8.8.10.1 Symbolic Differentiation: resExpr = $Dif(n, sym-
bExpr, “name”);

The symbolic differentiation function returns a symbolic
expression and accepts the following arguments:

1) number of times differentiation will be applied to the
input symbolic expression and to the interim result in order
to obtain the final result. For example $Dif(3,“sin(x)”,
“x”) will return the third derivative with respect to x of
sin(x).

8.8.10.2 Symbolic Integration: resExpr = Int(n, symbExpr,
“name”);

The symbolic integration function returns a symbolic expres-
sion and accepts the following arguments:

1) number of times differentiation will be applied to the
input symbolic expression and to the interim result in order
March 1, 2012 78

to obtain the final result. For example $Dif(3,“sin(x)”,
“x”) will return the third derivative with respect to x of
sin(x).

8.8.10.3 Laplace Transform: resExpr = $Lap(n, symbExpr,
“name”);

This system function performs the Laplace Transform on the
exression stored in the second argument with respect to the
variable whose name is stored in the third argument. The
first argument indicates the number of times the Laplace
Transfom shall be applied. The Laplace transform is
represneted as a function of “s”.

8.8.10.4 Inverse Laplace Transform: resExpr = $ILap(n, sym-
bExpr, “name”);

This system function performs the Laplace Transform on the
exression stored in the second argument with respect to the
variable whose name is stored in the third argument. The
first argument indicates the number of times the Laplace
Transfom shall be applied. The Laplace transform is
represneted as a function of “s”.

8.8.10.5 Evaluation of Symbolic Expression: $Eval(symbExpr,
value);

The symbolic expression stored in teh first argument is
evaluated for the current values of the objects being refer-
enced within the expression, and the result is stored in the
second argument, which may not be an expression or a lit-
eral..

8.8.10.6 Multi-Evaluation of Symbolic Expression: $EvalAr-
ray(symbExpr, “x”, increment, nrSteps, value);

The symbolic expression stored in symbExpr is evaluated for
the current value of the variable whose name is provided by
the second argument as well as for each subsequent value of
this variable obtained by adding its value to the value of
the third argument. Each result of the evaluation is stored
at the next index starting with index zero. There will be as
many evaluations as indicated by the fourth argument

8.8.10.6 1-D Symbolic Extraction: $FindExpr1(1-DM, step,
“name”, dist, n, resExpr);
March 1, 2012 79

This system task returns in the sixth argument the symbolic
expression, in terms of the variable having the name pro-
vided by the third argument, which approximates the values
stored in the first argument, where consecutive values cor-
respond to an increment provided by the second variable. The
fifth argument indicates how many samples starting with
index zero shall be considered within hte array 1-DM.

Given:

$FindExpr1(1-DM, step, “name”, dist, n, resExpr);
$EvalArray(resExpr, “name”, step, n, 1-DMRes);
d = $VpDistAbsMax(1-DM, 1-DMRes);

It must be that either d < dist (the fourth argument of sys-
tem task $FindExpr) or the the sixth argument of the same
task must return a null string.

8.8.10.7 2-D Symbolic Extraction: $FindExpr2(2-DM, step1,
step2, “n1”, “n2”, dist, n1, n2, resExpr);

Similar to $FindExpr1.

8.8.10.8 2-D Symbolic Extraction: $FindExpr3(3-DM, step1,
step2, step3, “n1”, “n2”, “n3”, dist, n1, n2, n3, resExpr);

Similar to $FindExpr1.

8.9 Generation of Gate-level models

Various Generators of gate-level models can supported on the
FinSimMath simulation platform, because:

1) it is easy to provide bit-accurate FinSimMath models for
the gte-level descriptions and thus allow for an easy con-
figuration change for each instance from FinSimMath to gate
level and vice-versa.

2) all interfaces are modeled at the verilog bit level and
conversion functions are provided to convert between verilog
bit level, verilog real type and variable precision objects:
$VpFCopyFl2Reg, $VpFCopyReg2Fl, $VpCopyReg2Vp.

8.9.1 FIR Filter Generation

8.9.1.1 Invocation
March 1, 2012 80

The FIR filter generation is performed invoking:

finvc -cf fir_spec.cf

where the command file fir_spec has the following syntax:

fir_spec := -a <name>.v +FIR +Pass +Synch
 +attenuation=<value> +ripple=<value>
 +frequency_unit=<funit> +pa=<value>
 +p1=<value> +p2=<value> +pb=<value>
 +pm=<value> +mrate=<value> +srate=<value>
 +irate=<value> +orate=<value>
 +tb_f1=<value> +tb_f2=<value>
 +nr_samples=<value> +Res=<rname>.res
 <timescale>

As a result of the invocation a file named
<name>GTL<rname>.v will be produced. This file will contain
the gate-level representation of the generated filter, the
test bench and the high level bit accurate models of
resources used by the generated filter, such as the multiply
accumulate module.

8.9.1.2 Description of the resource file

The resource file indicated by +Res=<rname>.res is a special
case of the resource file used for Math2GTL Synthesis and has
the following syntax:

primitives: string, integer
file ::= {declarations | mac_decl}
declarations ::=
mac_decl ::= mac <mac_name>; <op_body> end
mac_name ::= mac_<type>_<sz1>_<sz2>
type ::= fl | fx
sz1 ::= integer /*size of first field of data container*/
sz2 ::= integer /*size of second field of data container*/
fl ::= string /*floating point*/
fx ::= string /*fix point as two's complement*/
declarations ::= declare {decl_assign} enddeclare
decl_assign ::= nr_mem_assign|nr_op_assign|nr_targets_assign
nr_mem_assign ::= nrMemories = 0;
nr_op_assign ::= nrOperators = 1;
nr_targets_assign ::= nrTargets = 1;
<op_body> ::= {op_assign}
op_assign ::= format = string; sz1 = value; sz2 = value;
 rounding = string, overflow = string;
 word_width = value; latency = value;
March 1, 2012 81

 nrInst = value;

8.9.1.3 Description of the Filter Specification

+FIR: is mandatory and indicates the type of filter to be
generated. Based on which type of filter is to be generated
different specification items must be provided.

+Pass: indicates whether the specification is for pass band
or for stop band.

+attenuation: indicates in dB the minimum attenuation for
the stop band.

+ripple: indicates in dB the maximum ripple of the pass band.

+frequency unit: indicates which unit is used for specifying
the various frequencies. All use the same unit. The unit can
be one of the following: GHz, Gr/s, MHz, Mr/s, KHz, Kr/s, Hz,
r/s.

In case +Pass is specified the meaning of +pa, +p1, +p2, +pb,
and +pm are as follows:

+pa: indicates the right bound of the left stop band.

+p1: indicates the left bound of the pass band.

+p2: indicates the right bound of the pass band

+pb: indicates the left bound of the right stop band.

In case +Pass is not specified the meanings are chnaged such
that +p1 and +p2 represent the letf and respectively the
right bound of the stop band, and +pa and +pb represent the
right and respectively left bound of the left and respec-
tively right pass bands.

+pm: indicates the maximum frequency of interest. Typically
this is sampling_rate/2 and should not exceed this limit.

+mrate: indicates the frequency of the root clock from which
all clocks can be derived.

+srate: indicates the sampling rate.

+irate: indicates the frequency of the internal clock.

+orate: indicates the frequency of the output clock.
March 1, 2012 82

+tb_f1: indicates the frequency of the ideal output which
will also participate additively to the input.

+tb_f2: indicates the frequency of the signal to be added to
the signal of frequency tb_f1 in order to produce the input
signal.

+nr_samples: indicates the number of samples tha twill be
considered in hte simulation.

+Res: indicates the name of the resource file.

-timescale: is verilog timescale directive, e.g. timescale
1ps/ 1ps, to be used in the simulation. The timescale will be
made consistent with the frequency unit and the frequency
values used.

8.9.1.4 Description of the generated code

The generated code consists of:

- module top: test bench

- module fir: filter described at structural level

- module pmac: described at structural level contains sev-
eral multiply accumulators working simultaneously and some
logic that decides when the pmac should process and put out-
put results at the multiplexed output of the filter.

- module circ_cnt: circular up counter described at RTL
level

-module idxgen: circular down counter described at RTL level

- module cmp1: comparator of bits described at structural
level.

- module mem_a: RTL model of the memory containing the coef-
ficients.

- module mem_in: structural model of a single write port/
multiple read ports, using instances of module mem_rw.

-module mem_rw: RTL model of a single port write single port
read memory.

- module data_gen: FinSimMath description of the module pro-
ducing the input signal as specified by tb_f1 and tb_f2.
March 1, 2012 83

module idata_gen: FinSimMath description of the module pro-
ducing the ideal output as specified by tb_f1.

module mac: FinSimMath bit accurate description at the math-
ematical level of the multiply accumulate module used in one
or more instances.

8.9.1.5 Description of the Generated Test Bench

The Test Bench consists of:

- code that buffers the input to the filter and serializes
the output of the filter, if necessary. This code is combined
with code that handles the decimation of the output.

- code that computes at the mathematical level the computa-
tions performed at the gate-level by the filter and compares
the results, issueing error messages if necessary.

- code that produces graphical representations of: i/o spec-
trum, i/o values, and amplitude gain.

9.0 Tour of the Super-FinSim design environment

9.1 Running Super-FinSim in pure interpreted mode

In the pure interpreted mode, all modules are interpreted.
To run Super-FinSim in the interpreted mode, the compiler
must be invoked as follows:

finvc -dsm int <other compiler options>

9.2 Running Super-FinSim in mixed mode

 The compiler allows many options to specify mixed mode sim-
ulation. The options are:

-dsm <mode>: Set the default simulation mode to compile (-
dsm com) or interpret (-dsm int). The default simulation
mode is compiled.

-intm <modulename>: Interpret the specified module.

-comm <modulename>: Compile the specified module.

-intf <file>: Interpret modules read from the specified
file.
March 1, 2012 84

-comf <file>: Compile modules read from the specified file.

-intd <directory>: Interpret modules read from any file in
the specified directory.

-comd <directory>: Compile modules read from any file in the
specified directory.

9.3 Running Super-FinSim in accelerated mode

For the fastest simulation speed, the compiler should be
invoked with the optimization level 11, ‘-ol 11’. Other gen-
eral invocation options of the simulator that can speed up
the overall simulation time are ‘-nodriverchk’, ‘-nowarning’
and ‘-notimechk’. A side affect of disabling timing check
with the option ‘-notimechk’ is that timing check informa-
tion will not be accessible through PLI or SDF. For an even
greater performance advantage, timing checks can be disabled
at compile time with the option +notimingchecks. Further-
more, entire specify blocks can be disabled at compile time
with +nospecify.

9.4 General simulation tips
1. Behavioral designs/modules should be compiled and structural designs should be

interpreted.

2. Modules providing stimulus via large initial blocks should be interpreted instead of
compiled.

3. Designs that run for a short period of time should be interpreted, particularly if the time
it takes to build the simulator is comparable to the actual simulation time.

4. Designs that have no timing violations run faster if the option ‘+notimingchecks’ is
specified at compile time.

5. If the C compiler fails on a module due to the limitations of the compiler, one can
interpret that module instead.

6. Simulations running at the highest optimization level (-ol 11) may lead to slightly
different results. This is mainly due to the difference in the order of evaluation.

7. For high degree of compatibility with the OVIsim simulator, invoke the simulator with
the option ‘-c’.

10.0 The Graphical User Interface for Super-FinSim

To start the GUI run fingui from the command prompt.
March 1, 2012 85

You can now open an existing design or create a new one. A
design is a collection of Verilog source files and the
options for the compile, build and simulate operations of
Super-FinSim. It could also contains some other files used
in your simulation: C or object files for your PLI or text
files for comments.

To create a new design, go to Design | New design. By default
the name of a new design is untitled. To change the name of
the design go to Design | Save As and specify the name of the
design. You can use also Design | Save to save any changes
you made in an opened design. To open an existing design
already saved use Design | Open.

The list of files which are part of the current design is
displayed on the left side of the main window. To add a new
file to the design, go to Design | Insert file and select a
file. To remove a file from the design use Design | Delete
file.

To open a source file from your design double-click with the
left button of your mouse. It is possible also to open any
text file selecting File | Open. If you want to save the
changes you made in a source file, use File | Save or File |
Save As. It is possible also to create a new source file from
File | New.

In order to run a simulation from GUI, you need to execute
the same steps as in the batch mode: compile (similar with
finvc) from Run | Compile, build (similar with finbuild)
from Run | Build and run (similar with running TOP.sim) from
Run | Simulate. The same commands can be executed by select-
ing the buttons from the toolbar of the main window. Before
running any of these commands you can set the options from
Options | Compile, Options | Build or Options | Simulate. An
easier way to set the options and closer to the batch mode is
to go to Options | Compile | Custom, Options | Build | Custom
or Options | Simulate | Custom.

When you run the compile or build command, a new window is
displayed with all messages reported by this command. To
close the window select Exit button from the top of it.

If there are no errors reported by compile or build commands,
you can execute the simulation from Run | Simulate or press-
ing the button from the toolbar. A new window will be dis-
played and all messages reported by the simulation will be
March 1, 2012 86

reported in this window. If the simulation stops in the
interactive mode (for example by executing the Verilog $stop
statement), you can enter valid interactive commands from
the combobox located at the bottom of the window and pressing
Send command. If you want to cancel the simulation just pres
Quit.

The simulation can be run in the interactive debug mode by
selecting Run | Debug or Debug. The debug mode is slower than
the default mode and is possible only if you run the compile
command with the option +srcdbg. Here are some features of
the debug mode:

• the simulation can be stopped by using the Stop button. The simulation will then run in
interactive mode.

• select Source debug for source level debugging. In this mode, use Next to go to the
next Verilog code line to be executed. Also you can add source breakpoints: double-
click in the left list box of the window.

• add time breakpoints: go to Breakpoints | Add time breakpoint. The time can be
absolute (from the beginning of the simulation) or relative (from the current time).

• add signal change breakpoints: go to Breakpoints | Add signal breakpoint.

• delete a breakpoint: go to Breakpoints | Breakpoints list, select the breakpoint and
press the Delete button.
March 1, 2012 87

It is possible to visualize the code coverage of your simula-
tion if you compiled the design with the option +finvcc. You
can have access to this feature selecting select Run | Code
coverage after you completed the simulation. A new window
will be displayed and you can select the source Verilog file
for which you want to view the coverage and also the type of
the report you want to obtain (“less than” or “greater than”
a particular value.

Note: GUI for Super-FinSim is available only for the Win-
dows, Linux and Solaris platforms.

10.1 Super-FinSim status codes and errors

All Super-FinSim programs return a status code upon execu-
tion. A status code of 0 indicates that the command executed
successfully. A non-zero status value indicates the execu-
tion failed. The table below illustrates all Super-FinSim
status codes:

Status code Status meaning
0 Execution was successful with zero or more warnings.
1 Execution failed due to an I/O error.
2 Execution failed due to a memory error.
3 Execution failed due to a user error.
4 Execution failed due to a fatal error.
5 Execution failed due to an internal error.
6 Execution failed due to a user warning.
7 Execution failed due to a license error.

10.2 Syntactic errors

Syntactic errors in a Verilog description are errors that
violate the BNF grammar of Verilog. Error messages identify
the source file, the line and the column of the offending
character or word and provide information regarding any pos-
sible correction.
March 1, 2012 88

10.3 Semantic errors

Semantic errors in a Verilog description are errors that do
not violate the BNF grammar, but the meaning of the language.
Error messages clearly indicate the nature of the problem.

10.4 Simulation errors

Simulation errors are run-time errors encountered by the
simulation kernel. These errors consist of design errors or
errors made by the user during the simulation session.

10.5 Compiler Internal errors

Compiler internal errors should never be encountered by the
user of the simulator. However, if this ever happens, such
messages should be reported to Fintronic USA, Inc., along
with the corresponding file, as user’s bug reports (UBRs).

10.6 Simulation Internal errors

Simulation internal errors should never be encountered by
the user of the simulator. However, if this ever happens,
such messages should be reported to Fintronic USA, Inc.,
along with the corresponding file, as user’s bug reports
(UBRs).

11.0 Running FinSim with Code Coverage

11.1 Introduction

Code Coverage is a package of tools which allow the user to
observe how many times each behavioral statement is executed
during simulation.

Before starting synthesis, it is important to ensure that
each line of behavior has been executed at least once.

To use the code coverage mechanism in FinSim, a proper
license must be ordered from Fintronic or its distributors.

To activate the code coverage mechanism, the FinSim Verilog
compiler (finvc) must be invoked with the option +finvcc, as
follows:

finvc <option or source file> +finvcc [<option or source file>...]
March 1, 2012 89

After compiling, linking and simulation, a file design.fil
will be created in the fintemp directory. This file contains
information about the code coverage in binary form.

11.2 Code Coverage Information

The utility vccdump displays all information contained in
design.fil. This information tells how many times each basic
block was executed and also very important, which blocks
were never executed. By default, vccdump reads the informa-
tion from fintemp\design.fil. To read information from
another file, run

vccdump -f <filename>

where <filename> is the full path to another *.fil file.

The utility vccmerge merges two or more code coverage files
(*.fil) from many runs of the same design. The syntax is:

vccmerge file1 file2 .. filen [-o file_result]

where file1, file2..., filen are the files to be merged and
file_result is the result file.

By default the result file is design.fil.

11.3 Display the Code Coverage Information

The utility vccdisplay transforms each Verilog source file
that is part of the simulation that produced the code cover-
age information into a corresponding file with the extension
.pro.

Each .pro file is located in the same directory as the corre-
sponding Verilog file, has the same prefix (name without
extension), and contains the same Verilog description. In
addition to the Verilog description, the .pro file contains
annotated code coverage information, indicating how many
times each line has been executed.

If different portions of the same line have been executed a
different number of times then there will be more numbers in
front of that line.

To reduce the number of occurrences of lines with multiple
execution numbers, the user is invited to run the collection
of code coverage information (finvc +finvcc) on the pretty
March 1, 2012 90

printed version of the Verilog code. The pretty printed ver-
sion of the Verilog code can be obtained by running

finvc -pp <other compiler options>

The pretty printed version of the Verilog code will be pro-
duced in the file pp.out or

finvc -ppf <pretty printed file name> <other compiler options>

to get the pretty printed version in a specified file.

11.4 Graphical User Interface for Code Coverage

To access the visual interface for code coverage run vccgui.
To open a design created from fingui, use File | Open design
or Open design button. It assumes the design was compiled
(with '+finvcc' option), built and simulated.

After a design is opened, load a source file from the design
list. In the list boxes from the left will be displayed how
many times each basic block was executed. You can select the
basic blocks which were executed less/more than a specific
value. To do this, go to View | Select. To unselect all lines
which were selected, go to View | Unselect all.

To display the code coverage information for the entire
design, select Command | VccDump. This command is the same as
vccdump from the command prompt.

To merge two code coverage result files select Command |
Merge vcc files.

Note: GUI for Code Coverage is available only for the Windows
and Linux platforms.
March 1, 2012 91

12.0 Running FinSim with third party tools

12.1 Running Super-FinSim with Specman

These instructions apply to FinSim version 4.7.26 or higher.

The files needed for linking FinSim with Specman are:

specman.tabTAB file to let finvc know about Specman's PLIs

specmanpli.com.makinclude file for running Specman in com-
piled mode; specifies the Specman object files that need to
be linked in

specmanpli.int.mak include file for running Specman in
interpreted mode; specifies the Specman object files that
need to be linked in

All these files can be found in the include directory of the
Super-FinSim distribution (the directory specified in the
FIN_INCLUDE_PATH environment variable).

In order to have Finsim working with Specview, you need to
replace the file "misc.tcl" from your specman installation
with the one in this directory. Just do the following:

mv $SPECMAN_HOME/tcl/specman/misc.tcl $SPECMAN_HOME/tcl/specman/misc.tcl.old
cp $FIN_INCLUDE_PATH/misc.tcl $SPECMAN_HOME/tcl/specman

(Currently this is the misc.tcl from Specman 4.0.2. If you
have a different version of Specman, please contact Fin-
tronic Customer Support to get an updated misc.tcl for your
release. This will be corrected by Verisity R&D in the near
future to be taken care of automatically.)

12.1.1 Verilog Compilation.
finvc -ptab $FIN_INCLUDE_PATH/specman.tab +fullaccess <your other options>

12.1.2 Building the simulator.

• Run Specman in compiled mode.

Copy the file specmanpli.com.mak into finpli.mak in the
local directory where you run finbuild:

cp $FIN_INCLUDE_PATH/specmanpli.com.mak finpli.mak

Edit the file finpli.mak and add to the FINUSERPLIOBJ vari-
able all the .o files (or shared libraries) generated by
March 1, 2012 92

Specman's sn_compile.sh. Please note that the Specman sup-
plied $(SPECMAN_HOME)/src/veriuser.c file will be compiled
into $(SPECMAN_HOME)/src/veriuser.o. If you prefer this
object file to reside in a different directory, please make a
copy of $(SPECMAN_HOME)/src/veriuser.c into that directory
and modify finpli.mak correspondingly.

For Solaris, please replace linux with solaris for all vari-
ables in the finpli.mak file and change FINUSERPLIDLL to
FINUSERPLIDLL=-ldl

Build the simulator:

finbuild -verbose

• Run Specman in interpreted mode.

Copy the file specmanpli.int.mak into finpli.mak in the
local directory where you run finbuild.

cp $FIN_INCLUDE_PATH/specmanpli.int.mak finpli.mak

Please note that the Specman supplied $(SPECMAN_HOME)/src/
veriuser.c file will be compiled into $(SPECMAN_HOME)/src/
veriuser.o. If you prefer this object file to reside in a
different directory, please make a copy of $(SPECMAN_HOME)/
src/veriuser.c into that directory and modify finpli.mak
correspondingly.

For Solaris, please replace linux with solaris for all vari-
ables in the finpli.mak file and change FINUSERPLIDLL to
FINUSERPLIDLL=-ldl

Build the simulator:

finbuild -verbose

12.1.3 Running the simulation.

You can now use Specman with FinSim in the same way you would
do it with any other simulator:

• Interactive mode

In interactive mode you must run the simulator with the flag
that requires to enter interactive mode immediately:

TOP.sim -i

Once you get the command prompt you can issue $sn commands:

specman > $sn("test")
March 1, 2012 93

and then run the simulation

specman > run ~

specman > quit

• Batch mode

In batch mode you have 2 alternatives:

If you have a command file (or script file) you may add
$sn("test") there before 'run' and then run

TOP.sim -script <your command file name>

or, you may use Specman pre-commands in one of the few possi-
ble ways:

setenv SPECMAN_PRE_COMMANDS "test"

specview -p "test" <your normal simulation command>

specsim -p "test" <your normal simulation command>

12.2 Running Super-FinSim with Debussy

The FinSim family of simulators now support a direct, high
performance interface to Debussy so there is no need to link
in any PLI. Simply place your $fsdb<...> calls in the Verilog
source code and run the simulation as you would normally do.
To run FinSim in interactive mode under the Debussy source
level debugger, first replace the Debussy resource file
debussy.rc your are currently using with the one downloaded
from our website.

Add the following options to finvc:

+srcdbg -interactive

and the following options to finbuild:

-debussy_interactive

Run debussy, select FinSim as your simulator and follow
Debussy's instructions on how to run a simulation in the
interactive mode.
March 1, 2012 94

12.3 Running Super-FinSim with Undertow

Under normal operation, Super-FinSim can generate a VCD dump
file that can be viewed with Undertow. This is accomplished
with the Verilog system task $dumpvars. However, VCD dump
files tend to be large and inefficient. Instead, the user may
wish to use the Optimizing Tool in Undertow to generate a
more compact VCD file with the PLI routine $vtDump. In addi-
tion, connectivity data can be generated with the PLI rou-
tine $utConnectivity. With the connectivity data, Undertow
can display net driver(s) during post simulation analysis.
For complete information of all the PLI routines, refer to
the documentation provided with Undertow.

In order to use Undertow’s PLI interface, copy the pre-
defined PLI configuration files into the working directory.
The file undertow.tab contains the Fintronic PLI table used
by the compiler. The PLI definition file undertow.mak is
used to build the simulator.

cp $FIN_INCLUDE_PATH/undertow.tab .
cp $FIN_INCLUDE_PATH/undertow.mak finpli.mak

Next invoke the compiler as follows:

finvc -ptab undertow.tab

13.0 Super-FinSim Implementation Notes

This chapter presents information pertaining to Fintronic’s
implementation of Verilog

13.1 Unsupported system tasks/functions

The Verilog system tasks/functions not supported yet are:

$input, $list, $incsave, $reset_count, $reset_value, $reset, $scope

All routines associated with gr_* such as gr_waves are also
not supported.
March 1, 2012 95

13.2 Default files

13.2.1 Default VCD dump file

In the Super-FinSim Simulation Environment, the default VCD
file is named ‘finsim.dmp’.

13.2.2 Default simulation log file

In the Super-FinSim Simulation Environment, the default sim-
ulation log file is named ‘finsim.log’.

13.2.3 Default simulation key file

In the Super-FinSim Simulation Environment, the default sim-
ulation key file is named ‘finsim.key’.

13.2.4 Default SDF log file

In the Super-FinSim Simulation Environment, the default SDF
log file is named ‘finsdf.log’.

13.3 Super-FinSim system limitations

Super-FinSim limits the maximum value of simulation time to
a 64-bit unsigned integer and limits the maximum bit width of
an expression to be 1Mbits.

13.4 Limitations of the host ‘C’ compiler

Some large behavioral modules may lead to the generation of a
C file that the C compiler cannot handle. Whenever a partic-
ular module cannot be compiled, it can be interpreted
instead using the compiler option ‘-intm <module name>’.

14.0 Platform specific Implementation Notes

14.1 HP-UX

Compiler support

Super-FinSim supports the HP-UX cc compiler.
March 1, 2012 96

14.2 Solaris

Compiler support

Super-FinSim supports the GNU gcc compiler.

14.3 Solaris 64 bit

Compiler support

Super-FinSim supports the Sun cc compiler.

14.4 Sony NEWS

Compiler support

Super-FinSim supports the GNU gcc compiler.

14.5 Windows 95/98/ME/2000/NT

Compiler support

Super-FinSim supports Microsoft Visual C++.

PLI interface

The Windows system header file has a type definition ‘HAN-
DLE’ which conflicts with the PLI type definition. There-
fore, one must use the PLI type definition ‘handle’ instead
of ‘HANDLE’.

Name of the simulator

Simulators are named with the extension ‘.exe’ instead of
‘.sim’.

Simulation builder limitations

Concurrent and network compilation features are not sup-
ported.
March 1, 2012 97

	1.0 Introduction
	1.1 Purpose of this document

	2.0 Installation
	2.1 Super-FinSim directory structure
	2.2 Super-FinSim installation guide
	2.2.1 Installing the UNIX distribution
	2.2.2 Installing the Windows distribution

	2.3 Host ‘C’ compiler
	2.4 Super-FinSim environment variables

	3.0 How to use the compiler
	3.1 Operations performed by the compiler
	1. Finds syntactic and semantic errors in the design.
	2. Generates the code necessary to configure and to program the simulation engine.
	3. Generates elaboration data files to build the simulator data structures.
	4. Generates a design file used to build the simulator.
	5. Optionally generates debugging information for a source level debugger or source profiler.
	6. Optionally writes the Intermediate Format corresponding to the design on disk.

	3.2 Invoking the Verilog Compiler
	3.2.1 Verilog Compiler Options
	3.2.2 Precedence order for simulation mode options
	1. -comm <mod>, -intm <mod>
	2. -comf <file>, -intf <file>
	3. -comd <dir>, -intd <dir>
	4. -dsm <mode>

	3.3 Files generated by the Verilog compiler finvc
	3.4 Incremental recompilation
	3.5 Separate compilation
	3.5.1 Compiling a Verilog Design Hierarchy into object code for later reuse
	3.5.2 Using a separately compiled hierarchy
	3.5.3 Restrictions

	3.6 Calling user C tasks/functions in Super-FinSim without the PLI interface
	3.7 Using Mixed Verilog/SysytemC descriptions
	3.7.1 3.7.2 Instantiating SystemC modules in Verilog
	3.7.2 3.7.3 Invoking finvc when there are SystemC modules involved
	3.7.3 3.7.4 Rules to be observed by SystemC modules instantiated in Verilog:
	3.7.4 3.7.5 Invoking TOP.sim or the name of the simulator

	4.0 How to build the simulator
	4.1 Operations performed by the simulation builder
	4.2 Invoking the simulation builder
	4.2.1 Simulation builder options
	4.2.2 Removing system files

	5.0 Building the PLI interface in Super-FinSim
	5.1 Using the Fintronic PLI table
	5.1.1 Creating the table manually
	1. Create equivalent entries in the Fintronic PLI table for all the entries found in the standard PLI table except for the very last one.
	2. The NAME field in the Fintronic PLI table is obtained from the 7th element in the standard PLI table (tfname).
	3. The TYPE file in the Fintronic PLI table is obtained from the 1st element in the standard PLI table (type) with the following conversion:

	5.1.2 Creating the table automatically
	1. Define PLI object files in the environment variable FINUSERPLIOBJ. For example, if PLI routines are stored in the file veriuser.c and mypli.c, then the environment variable FINUSERPLIOBJ must be defined as follows:
	2. Define PLI static library files if any in the environment variable FINUSERPLILIB.
	3. Define PLI dynamic libraries if any in the environment variable FINUSERPLIDLL.
	4. Build the custom table generator
	5. Run the table generator

	5.2 Building a custom compiler
	1. Define PLI object files in the environment variable FINUSERPLIOBJ. For example, if PLI routines are stored in the file veriuser.c and mypli.c, then the environment variable FINUSERPLIOBJ must be defined as follows:
	2. Define PLI static library files if any in the environment variable FINUSERPLILIB.
	3. Define PLI dynamic libraries if any in the environment variable FINUSERPLIDLL.
	4. Build the custom compiler

	5.3 Building the simulator with PLI
	5.4 Using multiple veriusertfs tables

	6.0 How to use the simulation engine
	6.1 Operations performed by the simulation engine
	1. Builds simulation objects: nets, registers, activities, etc.
	2. Simulates a network of simulation objects that represents a particular design.

	6.2 Invoking the simulator
	3. Simulates a network of simulation objects that represents a particular design.
	4. Simulates a network of simulation objects that represents a particular design.

	6.3 Simulator Options
	6.4 Simulation Modes
	6.4.1 Batch Simulation
	6.4.2 Interactive Simulation
	6.4.3 Using script files
	6.4.4 The Save and Restart feature in Super-FinSim.

	6.5 Starting a real time waveform display
	6.6 Simulation output
	6.7 Interrupting the simulator
	6.8 Terminating the simulator
	1. The maximum simulation time is reached in batch mode.
	2. The simulator has no more events to process.
	3. The interactive command ‘quit’ or ‘$finish’ is entered in the interactive mode.
	4. The system task $finish is executed from the Verilog source.
	5. The user presses the keystroke ‘Ctrl-\’. This option does not apply for the Windows NT version.

	7.0 Super-FinSim Interactive commands
	7.1 List of interactive commands
	7.2 Processing simulation data structures
	7.2.1 Build
	7.2.2 Init

	7.3 Running the simulation
	7.3.1 Run
	7.3.2 Cont

	7.4 Handling of simulation scope
	7.4.1 Cd
	7.4.2 Ls

	7.5 Querying of simulation objects
	7.5.1 Info
	7.5.2 Value
	7.5.3 Force
	7.5.4 Release

	7.6 Super-FinSim environment variables
	7.6.1 Setenv
	7.6.2 Printenv

	7.7 Miscellaneous system facilities
	7.8 Simulation Help Facility
	7.9 Command history
	7.10 Command aliasing

	8.0 Support for FinSimMath
	8.1 Introduction
	8.2 Variable Precision Fixed Point and Floating Point Support in Super- FinSim
	8.3 Introduction
	8.4 Values of VP registers
	8.5 Specifying VP objects
	8.5.1 Introduction
	8.5.2 Setting the fields of the descriptor
	8.5.3 The Default Descriptor

	8.6 VP register manipulation
	8.6.1 Simple Assignments toVP registers
	8.6.2 Arithmetic Operators operating on VP registers
	8.6.3 Logical Operators involving VP registers
	8.6.4 Assignments to non-VP objects
	8.6.5 Trigonometric Direct and Inverse Functions
	TABLE 1.

	8.6.6 Hyperbolic direct and Inverse Functions
	TABLE 2.

	8.6.7 Functions returning universal constants
	8.6.8 Logarithm and Exponential Functions
	8.6.9 Other Functions accepting VP registers as operators
	8.6.10 Using Special Condition Signals/Flags of VP registers
	8.6.11 Assigning VP registers to verilog registers
	8.6.12 Assigning verilog registers to VP registers
	8.6.13 Assigning Verilog Real to Verilog registers
	8.6.14 Displaying VP register values
	8.6.15 I/O of VP registers
	8.6.16 Plotting data

	8.7 Cartesian and Polar types
	8.7.1 Type VpComplex
	8.7.2 Type VpPolar
	8.7.3 Type VpFComplex
	8.7.4 Type VpFPolar
	8.7.5 Operators on Cartesian and Polar types

	8.8 Operations on Multi-dimensional arrays
	8.8.1 Populating Multi-dimensional arrays with values
	8.8.2 Viewing elements of a multi-dimensional array as part of a different structure
	8.8.3 Displaying Multi-dimensional Arrays
	8.8.4 Norms and Distances
	8.8.5 Sparse Matrices
	8.8.6 Fast Fourier Transform: $VpFft and $VpIfft
	8.8.7 Discreete Cosine Transform: $VpDct and $VpIdct
	8.8.8 Linear Differential Equations
	8.8.9 Numeric Differentiation and Integration
	8.8.10 Symbolic Computation

	8.9 Generation of Gate-level models
	8.9.1 FIR Filter Generation

	9.0 Tour of the Super-FinSim design environment
	9.1 Running Super-FinSim in pure interpreted mode
	9.2 Running Super-FinSim in mixed mode
	9.3 Running Super-FinSim in accelerated mode
	9.4 General simulation tips
	1. Behavioral designs/modules should be compiled and structural designs should be interpreted.
	2. Modules providing stimulus via large initial blocks should be interpreted instead of compiled.
	3. Designs that run for a short period of time should be interpreted, particularly if the time it takes to build the simulator is comparable to the actual simulation time.
	4. Designs that have no timing violations run faster if the option ‘+notimingchecks’ is specified at compile time.
	5. If the C compiler fails on a module due to the limitations of the compiler, one can interpret that module instead.
	6. Simulations running at the highest optimization level (-ol 11) may lead to slightly different results. This is mainly due to the difference in the order of evaluation.
	7. For high degree of compatibility with the OVIsim simulator, invoke the simulator with the option ‘-c’.

	10.0 The Graphical User Interface for Super-FinSim
	10.1 Super-FinSim status codes and errors
	10.2 Syntactic errors
	10.3 Semantic errors
	10.4 Simulation errors
	10.5 Compiler Internal errors
	10.6 Simulation Internal errors

	11.0 Running FinSim with Code Coverage
	11.1 Introduction
	11.2 Code Coverage Information
	11.3 Display the Code Coverage Information
	11.4 Graphical User Interface for Code Coverage

	12.0 Running FinSim with third party tools
	12.1 Running Super-FinSim with Specman
	12.1.1 Verilog Compilation.
	12.1.2 Building the simulator.
	12.1.3 Running the simulation.

	12.2 Running Super-FinSim with Debussy
	12.3 Running Super-FinSim with Undertow

	13.0 Super-FinSim Implementation Notes
	13.1 Unsupported system tasks/functions
	13.2 Default files
	13.2.1 Default VCD dump file
	13.2.2 Default simulation log file
	13.2.3 Default simulation key file
	13.2.4 Default SDF log file

	13.3 Super-FinSim system limitations
	13.4 Limitations of the host ‘C’ compiler

	14.0 Platform specific Implementation Notes
	14.1 HP-UX
	14.2 Solaris
	14.3 Solaris 64 bit
	14.4 Sony NEWS
	14.5 Windows 95/98/ME/2000/NT

