

Copyright (c) 2009 by Fintronic USA, Inc. All rights reserved. 1

Tutorial on

 FinSimMath(TM)

(an extension of Verilog(R) for Mathematical Descriptions)

by Alec Stanculescu, PhD

Fintronic USA, Inc.

San Mateo CA - March 21, 2015

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

2

FinSimMath(TM)

an extension of Verilog(R) for Mathematical

Descriptions

OUTLINE

1. Introduction

2. Overview of FinSimMath

3. Basic FinSimMath

4. Hierarchical Expressions Evaluation

5. Cartesian and Polar Types

6. Operations on Multi-dimensional Arrays

7. Practical Exercises Written in FinSimMath

8. Concluding Remarks

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

3

1. Introduction

FinSimMath’s creation was motivated by the need for having mathematical

modeling within the Verilog language. This language was designed with the intent

that (1) no explicit conversion functions are necessary, (2) runtime changes of

formats including the number of bits of the various fields are supported, and (3)

data in multi-dimensional arrays are easy to access globally.

FinSimMath supports a large number of mathematical system tasks, and provides

access to information regarding the occurrence of overflow, underflow, maximum

number of bits needed, and cumulative error.

User-define C functions can be invoked from FinSimMath allowing implementers

of mathematical algorithms into ASICs to use their own C functions inside the

FinSimMath language environment.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

4

2. Overview of FinSimMath

FinSimMath is an extension of the IEEE std 1364 Verilog language which

supports also the types VpDescriptor, VpReg (for variable precision objects),

VpCartesian, VpPolar, VpFCartesian, VpFPolar, RealPo, PolarPol, FPolarPol,

CartesianPol, and FCartesianPol types. Logical, Arithmetic and assignment

operators are defined to operate on all combination of these types including on

arrays and matrixes.

Objects of the variable precison types VpReg, VpCartesian, VpPolar,

CartesianPol and PolarPol can have their formats (fixed or floating) and the sizes

of the format fields modifiable at runtime. This allows for a tight loop in finding

optimal formats and sizes of sub-fields, given various costs based on computation

accuracy, overflow avoidance, quantization noise, power consumption (switching

activity), or other resource constraints.

 Global writing to and reading from multi-dimensional arrays are supported using

positional system tasks for each range within the system tasks $Diag, $InitM and

$PrintM.

A general form of aliasing using positional system tasks for each dimension of a

multi-dimensional array is introduced with the View as construct, enabling to

declare multi-dimensional arrays that are contained within an already declared

multi-dimensional array. Using this capability one can separate data from its actual

location within a multi-dimensional array.

A rich mathematical environment is available based on a number of system

functions and tasks, including: $VpSin, $VpCos, $VpTan, $VpCtan, $VpAsin,

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

5

$VpAcos, $VpAtan, $VpActan, VpSinh, $VpCosh, $VpTanh, $VpCtanh,

$VpAsinh, $VpAcosh, $VpAtanh, $VpActanh,$VpPow, $VpPow2, $VpLog,

$VpLn, $VpAbs, $VpFloor, $VpHypot, $VpFft, $VpIfft, $VpDct, $VpIdct,

$VpNormAbsMax, $VpNormAbsSum, $VpNormRMS, $VpDistAbsMax,

$VpDistAbsSum, etc.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

6

3. Basic FinSimMath

3.1 Declaring VP objects/data

VpReg is a predefined type. Objects of this type can have their formats modifiable

at runtime.

The size of the packed data is the maximum size that the object can have during

the simulation.

VpReg [0:511] mySecondReg;

3.2 Declaring VP descriptors

VpDescriptor is a predefined type. Objects of this type can store information

regarding the format of data objects associated to it.

VpDescriptor mySecondDescriptor;

3.3 Associating VP descriptors to VP data

Before being used a VP data must be associated to a descriptor via a call to the

system task

$VpAssociateDescriptorToData(data,

 descriptor);

3.4 Semantics of the fields of VP descriptors

The macros below are defined in finsimmath.h which can be included in any

Verilog module to be simulated by FinSim.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

7

Field 1: Size of integer part for fixed point or size of exponent plus one for

floating point.

Field 2: Size of fractional part for fixed point or size of mantissa for floating point.

Field 3: Format options:

`define TWOS_COMPLEMENT 1

`define SIGN_MAGNITUDE 2

`define FLOATING 3

Field 4: Rounding options:

`define TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF 1

`define TO_NEAREST_INTEGER_IF_TIE_TO_PLUS_INF 2

`define TO_NEAREST_INTEGER_IF_TIE_TO_ZERO 3

`define JUST_TRUNCATE 4

`define TO_ZERO 5

`define TO_INF 6

`define TO_MINUS_INF 7

`define TO_PLUS_INF 8

Field 5: Overflow options:

`define SATURATION 1

`define NORMAL 2

‘define WARNING 64

Field 6: Various flags:

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

8

`define REPORT_SPECIAL_CONDITION 64

 3.5 Modifying fields of VP descriptors
Predefined values of fields of type VpDescriptor are declared in finsimmath.h which

can be included in any FinSimMath model:

‘include “finsimmath.h”

 The size of the formats can be changed during the execution of the simulation, by

using the system tasks

$VpAssociateDescriptorToData(data, descriptor),

$VpSetDescriptorInfo(descriptor, field1, field2,

field3, field4, field5, field6), or

$VpSetDefaultOptionsfield1, field2, field3, field4,

field5, field6).

3.6 Assigning Verilog expressions to VP objects.

Verilog expressions are evaluated and their values placed in the VP object

according to the information present in the associated descriptor.

For example:

op1 = op2 + op3;

performs the addition of the values in op2 and op3 and place the result in op1,

where op1, op2, and op3 may have any scalar type: VpReg, real, integer, literal

real, literal integer.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

9

The same expression will perform the addition in case op1, op2, and op3 are of any

of the types: VpComplex, VpPolar, VpFComplex, VpFPolar, CartesianPol,

FCartesianPol, PolarPol, FPolarPol.

The same expression will perform the addition in case op1, op2, and op3 are

matrixes of compatible sizes where the elements can be either scalar or of the four

Cartesian and Polar types.

3.7 Assigning VP objects to Verilog objects

Assignments to objects of type real result in the object of type real having a value

as close as possible to the value being assigned.

Assignments to objects of type integer or reg result in the object on the left hand

side containing the same bit patern as the object on the right hand side.

3.8 Displaying VP objects

The Verilog system tasks for displaying objects have been extended with the

following format representations:

 - %y: real number representation,

 - %k: hex representation

 - %h: binary representation

3.9 Logical and Arithmetic Operators

Verilog standard arithmetic operators (+,-,*,/,**) may be used in

conjunction with variable precision objects (including cartesian and polar objects),

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

10

as well as with multidimensional arrays of such objects, without the need of

explicit conversion functions.

Verilog standard logical operators (>, >=, <, <=, ==, !=) may be used in

conjunction with variable precision objects.

4. Hierarchical Evaluation of Expressions

Scalar objects may be used in hierarchical expressions. Subexpressions are

evaluated in temporary VP objects. The evaluation is governed by the default

descriptor information, as well as by the descriptors of the operands where

applicable. The descriptor of the operands are used in a way in which to minimize

possible errors due to overflow or underflow.

FinSim does not yet support hierarchical expression with operands that are multi-

dimensional arrays. Such expressions must be split into simple expressions, each

having at most one operator.

5. Cartesian and Polar Types

5.1 VpCartesian

This type consists of two VP fields and objects of this type must be associated to a

descriptor before usage. The two fields represent cartesian co-ordinates and are

treated as such by the operators operating on them.

5.2 VpPolar

 This type consists of two VP fields and objects of this type must be associated to a

descriptor before usage. The two fields represent polar co-ordinates and are treated

as such by the operators operating on them.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

11

5.3 VpFCartesian

This type consists of two fields of type real which represent cartesian co-ordinates.

5.4 VpFPolar

This type consists of two fields of type real which represent polar co-ordinates.

5.5 Operations on types Cartesian and Polar
+, -, *, /, **,==, !=

5.6 Mixing Cartesian and Polar operands in the same simple expression

myPolar = {1.0, $Pi};

myCart = {1.0, 1.0};

myCart = myCart + myPolar;

$display(“myCart.Re = %y\n”, myCart.Re);

will print: myCart.Re= 0.0

6. Multi-dimensional Arrays

6.1 Operators

These are the operators defined on two dimensional arrays:

+,-,*,/, **

Usual constraints are placed on the sizes of each dimension:

a) for + and - the sizes of each dimension must be the same.

b) for * and / the size of the second dimension of the first operand must be equal to

the size of the first dimension of the second operand.

c) No constraints are imposed on the operand of **, as both the inverse and the

pseudo inverse operations are supported.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

12

Note: Currently, FinSim has a limit of 4000 for the size of one dimension of a

matrix, unless a call to $ToSparse(matrix) occurs at the beginning of an initial

block. In such a case, FinSim works well for matrices of up to 4,000,000 by

4,000,000.

6.2 Accessing copied data via position system tasks

This is achieved using the system task $InitM(myMem, value), where value stands

for an expression in terms of system functions $I1 through $In with n being the

number of dimensions of myMem. $In represents the index of the n-th dimension

of the current location.

The effect of the call is that for all combinations of indexes myMem[$I1]..[$In] =

value.

For complex operands (e.g. VpPolar) value stands for two arguments, one for each

element of the complex object.

For example:

$InitM(myMem, oMem[$I2][$I1]);

$InitM(myPMem, pMem[$I2][$I1].Mag,

 Mem[$I2][$I1].Ang);

Will result in the two dimensional arrays myMem and myPMem receiving the data

of the transposed of the two dimensional arrays oMem and pMem respectively.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

13

6.3 Creating views of multi-dimensional data

A view declaration creates an object which when referenced represents data

selected from another multi-dimensional array without copying the data, as in the

example below:

real myMem[0:SIZE-1][0:SIZE-1];

View real myView[0:SIZE-1][SIZE-1] as myMem[$I2][$I1];

$I1, and $I2 in the View construct represent the position of each element within the

view declaration (myView in this example).

As a result of the above View declaration any reference to myView or to any of its

elements will get the transposed of myMem. However, the data is not copied and

therefore any writing to myView will change myMem.

6.4 Displaying multi-dimensional data

This is achieved using $PrintM(myMem, format) where format stands for “%y”

with y being the format in which the elements of myMem will be displayed.

6.5 Norm and Distance

FinSimMath supports the following norms:

- $VpNormAbsMax(matrix) - maximum absolute value of all elements

- $VpNormAbsSum(matrix) - sum of absolute values of all elements

- $VpNormRMS(matrix) - square root of sum of squares of each element divided

by the number of elements

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

14

FinSimMath supports the following distances:

- $VpDistAbsMax(matrix) - the difference between the maximum absolute value

of each matrix.

- $VpDistAbsSum(matrix) -sum of absolute differences between the corresponding

values of two matrices

6.6 Sparse Matrices

Matrices can be declared sparse by calling $ToSparse(matrix) at the beginning of

an initial block. Operations on such matrices are a little slower than on regular

matrices, however they can be much larger. Version 10_07_197 or higher support

at least 4,000,000 by 4,000,000.

The following functions are support for accessing sparse matrices:

- $SpReadNextNzElemInLine(matrix, line, col, idx, value), where the inputs are

matrix, line, and idx and the outputs are col, idx and val. To obtain the first

element in a line one must set idx to -1. Upon execution idx will contain the handle

to the next non-zero element, col will contain the column of that element and val

the value of that element.

- $SpReadNextNzElemInCol(matrix, line, col, value), where the inputs are matrix,

line, and col and the outputs are line and value of teh next non-zero element. To

obtain the first element in a column one has to set the variable line to -1.

- $SpNulifyLine(matrix, line) - sets to zero all elements of the line indicated by

line.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

15

- $SpNulifyCol(matrix, col) sets to zero all elements of the column indicated by

col.

- $SpExchangeLine(matrix, line) - exchanges line indicted by line with line zero.

-$SpExchangeCol(matrix, col) - exchanges column indicated by col with column

zero.

-$Diag(M, l, c, v) - initializes matrices more efficiently which for large sparse

matrices make a significant difference.

This task places 1.0 in all elements in the first diagonal. It also place the value v in

all locations (i,j) having the property that l*i = c*j, provided that both l and c are

not zero.

 6.8 Solving Differential Equations

Support for solving differential equations is provided by the system task

$VpLODE(order, nrEq, h, nr_pts_per_ct_coef+1, x_ct, coef, Fe_ct, y_ct, ressymb),

where:

- order indicates the order of the differential equation, i.e. the highest derivative

that is involved,

- nrEq indicates the number of equations,

- h is the double of the sampling period

- nr_pts_per_ct_coef is the size of the sampled data,

- x_ct is a two dimensional array which contains the solution after the execution of

the system task, whereas the array x_ct[0] contains the initial conditions,

- coef is an array which contains the value of the coefficients of the equation,

- Fe_ct is a two dimensional array containing the samples of the values that are

independent of the functions to be found,

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

16

- y_ct is a two dimensional array containing after the execution of the system task

the first derivative of the solution in case the order is two or a three dimensional

array containing the the first and subsequent derivatives till order-1. Note that

before the call, the initial conditions have be be provided in y_ct[0],

- ressymb is a an array which contains the symbolic values if they exist.

7. Practical Exercises Written in FinSimMath

These examples are running on Super FinSim version 10_0_0 or subsequent

versions.

FinSimMath may be usable in the future in conjunction with other standard

compliant Verilog or SystemVerilog simulators.

7.1 Example of Verilog modules exchanging VP values

Instances of modules may exchange values either via external references or via

ports. The example below shows how module top instantiates a module VpAdd

and passes to it two operands to be added.

Note that the passing of vp data via ports is done while making sure that the data

objects in both the instantiating module and the instantiated module use descriptors

with the same formats and same size for the corresponding fields of the formats.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

17

module vpadd(in1w, in2w, out);

input in1w;

input in2w;

output out;

wire [0:511] in1w;

wire [0:511] in2w;

wire [0:511] out;

VpDescriptor d1;

VpReg [0:511] in1;

VpReg [0:511] in2;

VpReg [0:511] outR;

initial begin

 $VpSetDescriptorInfo(d1, 256, 96,`TWOS_COMPLEMENT,

 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION, 1);

 $VpAssocDescrToData(in1, d1);

 $VpAssocDescrToData(in2, d1);

 $VpAssocDescrToData(outR, d1);

end

assign out = outR;

always @(in1w or in2w)

begin

in1 = in1w;

in2 = in2w;

outR = in1 + in2;

end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

18

module top;

VpReg [0:511] in1;

VpReg [0:511] in2;

VpDescriptor d1;

wire [0:511] w;

vpadd add1(in1, in2, w);

initial begin

 $VpSetDescriptorInfo(d1, 256, 96,`TWOS_COMPLEMENT,

 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION, 1);

 $VpAssocDescrToData(in1, d1);

 $VpAssocDescrToData(in2, d1);

#10;

in1 = 2;

in2 = 3;

#2;

in2 = w;

$display("in2 = %y\n", in2);

end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

19

7.2 Butterworth LP IIR order 5 filter using operands of type VpFCartesian

The type VpFCartesian consists of two fields of type real making the execution

faster than when using objects of types whose formats can be modified at run time,

as in the example in 7.3.

The error is measured as a vector distance between the output and the ideal output.

The frequency spectrum of the output is displayed in both cartesian and polar

coordinates.

This step is typically used to make sure that the algorithm works properly.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

20

module top;

parameter SIZE = 32 * 32;

parameter ORDER= 6;

VpFCartesian in[-ORDER+1:SIZE-1], out[-ORDER+1:SIZE-1],

idealOut[0:SIZE-1];

VpFPolar in_polar[0:SIZE-1], polar_s;

real a [0:ORDER-1];

real b [0:ORDER-1];

real t[0:ORDER-1], s[0:ORDER-3];

real delta;

integer i, j, k;

real distance;

initial begin

/**********************************

1. Load input in in.Re and load ideal output in

idealOut.Re

 Notation:

 a) sampling_rate: time passed between loading

consecutive values in in.Re.

 b) SIZE: number of samples

 c) delta: 2*Pi/SIZE is a constant chosen such that

values $VpSin(n*delta*j)

 with 0 <= j < SIZE represents a sinusoid as function

of time with frequency freq = ((sampling_rate/2)/SIZE)

* n, in other words within the time span of the

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

21

collection of all SIZE samples, there are n complete

periods of the sinusoid.

2. Initialize ORDER number of values of the history of

in and out for the filter to operate in best

conditions.

The values are chosen to be zero in this case. Other

values may be better in other circumstances.

***********************/

delta = (2*$Pi) / SIZE;

$InitM(in, (($I1 <= 0) ?

 0.0 : $VpSin(delta * $I1) +

 $VpSin((SIZE/4)*delta*$I1)/10), 0.0);

$InitM(idealOut, $VpSin(delta * $I1)/10, 0.0);

$InitM(out, 0.0, 0.0);

/*************************************

3. Load coeficients of Butterworth IIR LP filter with

passband: 0-500 Hz (assuming a sample rate of 8000

samples /sec) effective order= 5

*****************************/

a = { 1.6411125E-4, 8.205562E-4, 0.0016411124,

0.0016411124, 8.205562E-4, 1.6411125E-4 };

b = { 1.0, -3.7314737, 5.693888, -4.420512, 1.7411026,

-0.277753 };

/*********************************

4. Perform filtering according to the specified

coeficients and initial values of histories of in and

out

************************************/

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

22

for (k=0; k < SIZE; k = k+1)

begin

 t[ORDER-1] = a[ORDER-1] *

 in[k-ORDER+1].Re;

 for (j = ORDER-2; j >= 0; j = j - 1)

 begin

 t[j] = a[j] * in[k-j].Re + t[j+1];

 end

 s[ORDER-3] = -b[ORDER-1]*

 out[k-ORDER+1].Re - b[ORDER-2] *

 out[k-ORDER+2].Re;

 for (j = ORDER-4; j >= 0; j = j - 1)

 begin

 s[j] = s[j+1] - b[j+1] * out[k-j-1].Re;

 end

 out[k].Re = t[0] + s[0];

end

/**************************************

5. Display sampled values - in[].Re

**************************************/

for (j = 0; j < SIZE; j = j + 1)

begin

 $display("sampled value[j]=%e\n", in[j].Re);

end

/***

6. Display ideal output values - idealOut

**/

for (j = 0; j < SIZE; j = j + 1)

begin

 $display("ideal output[%d]=%e\n", j,

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

23

 idealOut[j].Re);

end

/***********************************

7. Display filtered values - out

***********************************/

for (j = 0; j < SIZE; j = j + 1)

begin

 $display("filtered output[%d]=%e\n", j,

 out[j].Re);

end

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

24

/*********************************

8. Compute distance between filtered output and ideal

output vectors

******************************/

distance = $VpDistAbsSum(out, idealOut)/SIZE;

$display("Mean distance between filtered out and ideal

out samples = %e\n", distance);

distance = $VpDistAbsMax(out, idealOut);

$display("Maximum distance between filtered out and

ideal out samples = %e\n", distance);

/***********************************

9.Display frequency spectrum of input/sampled

 values - in

*************************/

$VpFft(in, 0, SIZE-1);

for (j = 0; j < SIZE/2; j = j + 1)

begin

 $display("in[%d] Re=%e, Im=%e\n", j, in[j].Re,

in[j].Im);

end

$display("finished display of freq dom of input\n");

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

25

/***********************************

10.a Display magnitude and phase of spectrum of

input/sampled values using array assignment with

implicit conversion from cartesian to polar coordinates

**/

in_polar = in;

for (j = 0; j < SIZE/2; j = j + 1)

begin

 $display("in_polar[%d] Mag=%e, Ang=%e\n",

 j, in_polar[j].Mag, in_polar[j].Ang);

end

/************************************

10.b Display magnitude and phase of spectrum of

input/sampled values using assignment to scalar with

implicit conversion from cartesian to polar coordinates

*******************************/

for (j = 0; j < SIZE/2; j = j + 1)

begin

 polar_s = in[j];

 $display("polar_s[%d] Mag=%e, Ang=%e\n", j,

 polar_s.Mag, polar_s.Ang);

end

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

26

/********************************

11. Perform $VpIfft on the content of in vector. The

result must be close to the sampled input. This is just

a check for the accuracy of $VpFft and $VpIfft system

tasks for the given number of bits used (precision)

**/

$VpIfft(in, 0, SIZE-1);

for (j = 0; j < SIZE/2; j = j + 1)

begin

 $display("should be close to in[%d] Re=%e,

 Im=%e\n", j, in[j].Re, in[j].Im);

end

/***********************************

12. Display frequency spectrum of ideal

 output - idealOut

*******************************/

$VpFft(idealOut, 0, SIZE-1);

for (j = 0; j < SIZE/2; j = j + 1)

begin

 $display("idealOut[%d] Re=%e, Im=%e\n",

 j, idealOut[j].Re, idealOut[j].Im);

end

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

27

/**********************

13. Display frequency spectrum of filtered output - out

***************************/

$VpFft(out, 0, SIZE-1);

for (j = 0; j < SIZE/2; j = j + 1)

begin

$display("out[%d] Re=%e, Im=%e\n", j, out[j].Re,

out[j].Im);

end

end /*initial*/

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

28

7.3 Butterworth LP IIR order 5 filter using VP objects

The size of the fields of the formats are changed at runtime in order to find an

acceptable solution.

 This example uses FinSimMath's VpCartesian and VpPolar scalar and vector types

in conjunction with $VpSin, $VpFft, $VpIfft to demonstrate the implementation of

a low pas Butterworth filter and other DSP processing.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

29

module top;

‘include “finsimmath.h”

parameter SIZE = 32 * 32;

parameter ORDER= 6;

VpCartesian in[-ORDER+1:SIZE-1], out[-ORDER+1:SIZE-1],

idealOut[0:SIZE-1];

VpPolar in_polar[0:SIZE-1], polar_s;

VpReg [0:511] tmp;

VpReg [0:511] a [0:ORDER-1];

VpReg [0:511] b [0:ORDER-1];

VpReg [0:1] d1;

VpReg [0:511] t[0:ORDER-1];

VpReg [0:511] s[0:ORDER-3];

real acceptableDistance;

integer notDone,j,k, sizeInt, sizeDec, format;

real delta, dist;

initial begin

$VpAssocDescrToData(s, d1);

$VpAssocDescrToData(t, d1);

$VpAssocDescrToData(in_polar, d1);

$VpAssocDescrToData(polar_s, d1);

$VpAssocDescrToData(a, d1);

$VpAssocDescrToData(b, d1);

$VpAssocDescrToData(in, d1);

$VpAssocDescrToData(out, d1);

$VpAssocDescrToData(idealOut, d1);

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

30

/*********************************

Because the there is a distorsion in phase due to a

delay between the filtered output and the ideal output,

the distance depends on the number of samples per time

unit, becoming smaller with more samples.

*************************************/

if (SIZE == 1024) acceptableDistance = 0.032;

else if (SIZE == 4096)

 acceptableDistance = 0.012;

else begin

 $display(" acceptableDistance is not yet known for

SIZE=%d. Use operands of type real to determine

accptableDistance \n", SIZE);

end

for (format = 0; format < 2;

 format = format + 1)

begin

 if (format == 0)

 begin

 $display("Try Floating point\n");

 sizeInt = 7;

 sizeDec = 14;

 end

 else

 begin

 $display("Try Two's complement\n");

 sizeInt = 7;

 sizeDec = 14;

 end

notDone = 1;

while (notDone)

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

31

begin

 if (format == ‘FLOATING)

 begin

 $VpSetDefaultOptions(sizeInt,

 sizeDec, `FLOATING,

 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION, 1);

 $VpSetDescriptorInfo(d1, sizeInt,

 sizeDec,`FLOATING,

 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION, 1);

 end

 else

 begin

 $VpSetDefaultOptions(sizeInt, sizeDec,

 `TWOS_COMPLEMENT,

 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION, 1);

 $VpSetDescriptorInfo(d1, sizeInt,

 sizeDec, `TWOS_COMPLEMENT,

 `TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION, 1);

end

$display("Trying sizeInt=%d, sizeDec=%d\n", sizeInt,

sizeDec);

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

32

/*********************************

1. Load input in in.Re and load ideal output in

idealOut.Re

 Notation:

a) sampling_rate: time passed between loading

consecutive values in in.Re.

b) SIZE: number of samples

c) delta: 2*Pi/SIZE is a constant chosen such that

values $VpSin(n*delta*j) with 0 <= j < SIZE represents

a sinusoid as function of time

with frequency

freq = ((sampling_rate/2)/SIZE) * n, in other words

within the time span of the collection of all SIZE

samples, there are n complete periods of the sinusoid.

************************/

delta = (2*$VpGetPi()) / SIZE;

for (j = 0; j < SIZE; j = j + 1)

begin

 in[j].Re = $VpSin(delta * j) +

 $VpSin((SIZE/4)*delta*j)/10.0;

 idealOut[j].Re = $VpSin(delta * j);

 in[j].Im = 0.0;

 idealOut[j].Im = 0.0;

end

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

33

/*********************************

2. load coeficients of Butterworth IIR LP filter with

passband: 0-500 Hz (assuming a sample rate of 8000

samples /sec) effective order= 5

*************************************/

$display("Loading coeficients\n");

a[0] = 0.00016411125; b[0] = 1.0;

a[1] = 0.0008205562; b[1] = -3.7314737;

a[2] = 0.0016411124; b[2] = 5.693888;

a[3] = 0.0016411124; b[3] = -4.420512;

a[4] = 0.0008205562; b[4] = 1.7411026;

a[5] = 0.00016411125; b[5] = -0.277753;

/*******************************

3. Initialize ORDER number of values of the history of

in and out for the filter to operate in best

conditions. The values are chosen to be zero in this

case. Other values may be better in other

circumstances.

********************************/

$display("Initialize History\n");

for (j = 0; j < ORDER; j = j + 1)

begin

in[j-ORDER+1].Re = 0.0;

out[j-ORDER+1].Re = 0.0;

end

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

34

/********************************

4. Perform filtering according to the specified

coeficients and initial values of histories of in and

out

*********************************/

$display("Perform Filtering\n");

for (k=0; k < SIZE; k = k+1)

begin

 t[ORDER-1] = a[ORDER-1] * in[k-ORDER+1].Re;

 for (j = ORDER-2; j >= 0; j = j - 1)

 t[j] = a[j] * in[k-j].Re + t[j+1];

 s[ORDER-3] = -b[ORDER-1]*

 out[k-ORDER+1].Re - b[ORDER-2] *

 out[k-ORDER+2].Re;

 for (j = ORDER-4; j >= 0; j = j - 1)

 s[j] = s[j+1] - b[j+1] * out[k-j-1].Re;

 out[k].Re = t[0] + s[0];

 end

 for (j = 0; j < SIZE; j = j + 1)

 $display("filtered output[%d]=%y\n", j,

 out[j].Re);

 $display("Compute Distance\n");

 dist = $VpDistAbsSum(out, idealOut)/SIZE;

 $display("distance between filtered out and

ideal output = %e\n", dist);

 if (dist > acceptableDistance)

 begin

 $display("For sizeDec = %d the distance is %e,

while acceptable is %e\n",

 sizeDec, dist, acceptableDistance);

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

35

 sizeDec = sizeDec + 1;

 end

 else

 begin

 $display("sizeInt = %d\n sizeDec = %d\n lead to a

distance of %e <= acceptable distance of %e",

sizeInt,sizeDec, dist,

 acceptableDistance);

 notDone = 0;

 end

end

end

end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

36

7.4 Performing Fft and Ifft transforms

module top;

parameter SIZE = 1024 * 1024;

integer k;

real delta;

VpFCartesian xformFC [0:SIZE - 1];

initial begin

#1;

$InitM(xformFC, (($I1==3) ? 7.0 : 0.0), 0.0);

$display("xformFC[3].Re=%e\n",xformFC[3].Re);

for (k = 0; k < 1; k = k + 1)

begin

 $VpFft(xformFC, 0, SIZE-1);

 $VpIfft(xformFC, 0, SIZE-1);

end

/*$PrintM(xformFC, "%e");*/

$display("xformFC[3].Re=%e\n",xformFC[3].Re);

end

endmodule

7.5 Partitioning for Multi-threaded processing

Example of using the View as construct in order to write code that is independent

of the actual location of the data, within a multi-dimensional array. One application

is the coding of multi-threaded video processing, where the code ought to remain

unchanged when the number of partitions change.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

37

module top;

parameter W = 2;

parameter SIZE = 8;

/* main data */

real Orig[SIZE-1:0][SIZE-1:0];

/* copied partition of main data */

real M3[SIZE/2+1:0][SIZE/2+1:0];

/* sliding windows into the copied partitions

 enable writing code that is independent of the

 actual location of the data */

view real VM3[W:0][W:0] as

 M3[VM3_base1+$I1][VM3_base2+$I2];

integer VM3_base1, VM3_base2;

/* view for writing data back into Orig */

view real V3M[SIZE/2-1:0][SIZE/2-1:0] as

 Orig[M3_base1+$I1][M3_base3+$I2];

integer M3_base1, M3_base3;

initial begin

 $InitM(Orig, ($I1*10000+$I2));

end

/* example of processing partition M3, using the

 sliding window VM3 */

initial begin

#20;

 /* copy from the appropriate partition in Orig into

M3. Set to 0 data located out of the range of the

original matrix. */

$InitM(M3, (($I1 == SIZE/2+1) ||

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

38

 ($I2 == SIZE/2+1))? 0 :

 Orig[SIZE/2-1+$I1][SIZE/2-1+$I2]);

 $InitM(M3, Orig[M3_base1+$I1][M3_base2+$I2]);

 $PrintM(M3, "%e");

/* Set the base of the sliding window */

 VM3_base1 = 2;

 VM3_base2 = 2;

/* modify data in M3 */

VM3[W][W] = 99.0;

/* set the base of V3M for writing into Orig */

 M3_base1 = SIZE/2;

 M3_base3 = SIZE/2;

/* write into Orig via the view V3M */

$InitM(V3M, M3[$I1+1][$I2+1]);

$PrintM(Orig, “%e”);

 end

endmodule

7.6 Finding the inverse of a matrix

 module top;

parameter SIZE = 16;

real AR[SIZE-1:0][SIZE-1:0];

integer mone;

initial begin

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

39

 /* populate AR into a Pascal Matrix */

 $InitM(AR, (($I1 == 0) ? 1 :

 (($I2 == 0) ? 1 : (AR[$I1-1][$I2] +

 AR[$I1][$I2-1]))));

 $PrintM(AR, "%e");

 /*compute the inverse twice */

 AR = AR**(-1);

 $PrintM(AR, "%e");

 AR = AR**(-1);

 $PrintM(AR, "%e");

end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

40

7.7 Finding the inverse of a large matrix of type real

This example works on FinSim 10_0_6 and subsequent versions.

This example shows how to invert matrices of 4000x4000 elements of type real.

The matrix is inverted twice and three values are checked to see that they remained

unchanged after the two inversions.

module top;

parameter SIZE = 4000;

real AR[0:SIZE-1][SIZE-1:0];

real IR[SIZE-1:0][SIZE-1:0];

real r;

initial begin

/* $InitM(AR, ($I1 == $I2) ? 1 : ($I1 == 2*$I2) ? 7 :

0); which is more efficiently written as $Diag(AR, 2,

1, 7.0

*/

 $Diag(AR, 2, 1, 7.0);

 IR = AR**(-1);

 IR = IR ** (-1);

 $display("IR[%d][%d]= %e\n",16,8,IR[16][8]);

 $display("IR[%d][%d]= %e\n",16,9,IR[16][9]);

 $display("IR[%d][%d]= %e\n", 200, 100, IR[200][100]);

end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

41

7.8 Finding the pseudo inverse of a matrix

module top;

real Q[3:0][2:0];

real S[3:0][0:0];

real P[2:0][0:0];

 initial begin

 Q = {1.0, 1.0, 1.0,

 1.0, 2.0, 1.0,

 1.0, 1.0, 2.0,

 2.0, 1.0, 1.0};

 S = {6.0, 8.0, 9.0, 7.0};

 $PrintM(Q, "%e");

 $PrintM(S, "%e");

 P = S/Q;

 $PrintM(P,"%e");

 end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

42

7.9 Checking Special Conditions

module top;

‘include “finsimmath.h”

VpReg [0:511] in1;

VpReg [0:511] in2;

VpReg [0:511] out;

VpDescriptor d1, d2;

initial begin

$VpSetDescriptorInfo(d1, 150, 96, `TWOS_COMPLEMENT,

`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION, 1);

$VpSetDescriptorInfo(d2, 20, 10, `TWOS_COMPLEMENT,

`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF+

 `WARNING,

`SATURATION+`WARNING, 1);

$VpSetDefaultOptions(256, 96, `TWOS_COMPLEMENT,

`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

`SATURATION, 1);

$VpAssocDescrToData(in1, d1);

$VpAssocDescrToData(in2, d1);

$VpAssocDescrToData(out, d2);

#10;

/*overflow at assignment to smaller integer part */

 in1 = 2323;

 in2 = in1 **10;

 $display("in2 = %k\n", in2);

 out = in2;

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

43

 $display("out = %k\n", out);

#10;

 /* underflow at assignment to smaller fractional size

*/

 in2 = 0.00000000000001;

 $display("in2 = %k\n", in2);

 out = in2;

 $display("out = %k\n", out);

end

always @(out_Overflow)

begin

 $display($time,,"out: Overflow = %d\n",

out_Overflow);

end

always @(out_Underflow)

begin

 $display($time,,"out: Underflow = %d\n",

out_Underflow);

end

always @(out_PeakNrOfIntBitsUsed)

begin

 $display($time,,"out: PeakNrOfIntBitsUsed = %d\n",

out_PeakNrOfIntBitsUsed);

end

always @(out_NrOfDecBitsLost)

begin

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

44

 $display($time,,"out: NrOfDecBitsLost = %d\n",

out_NrOfDecBitsLost);

end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

45

7.10 Fast Autocorrelation

 This example shows how to perform fast autocorrelation on two vectors of type

VpFComplex. Objects of this type are complex numbers in cartesian coordinates,

with fields of type real.

module top;

 parameter SIZE = 1024;

 VpFCartesian t1[2*SIZE -1:0],

 t2[2*SIZE -1:0],

 prod[2*SIZE -1:0];

 integer j;

 initial begin

 #1;

 $InitM(t1,

 ($I1 < SIZE-1) ? 0 :

 $I1-SIZE+1, 0);

 $PrintM(t1, "%e");

 $InitM(t2,

 ($I1 < SIZE) ? 0 : 2*SIZE-$I1, 0);

 $PrintM(t2, "%e");

 $VpFft(t1, 0, 2*SIZE-1);

 $VpFft(t2, 0, 2*SIZE-1);

 for (j = 0; j < 2*SIZE; j = j + 1) begin

 prod[j] = t1[j] * t2[j];

 end

 $VpIfft(prod, 0, 2*SIZE-1);

 $PrintM(prod, "%e");

 end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

46

7.11 Inverting a 4,000,000 by 4,000,000 sparse matrix in FinSimMath

 This example works on FinSim 10_07_197 and subsequent versions.

This example shows how to invert sparse matrices of 4,000,000 by 4,000,000

elements of type real.

The matrix is inverted twice and all non-zero values on one line and one

column are displayed to see that they remained unchanged after the two

inversions.

On a core i7 laptop under Linux 64 at 2.4Gz this example run in 1.11 seconds.

module top;

parameter integer size = 4000000;

real MReal1 [size-1 : 0][size-1 : 0];

real MRInv [size-1 : 0][size-1 : 0];

integer found, lin, col, idx;

integer i;

real r;

initial begin

 /* declaring sparse matrices */

 $ToSparse(MReal1);

 $ToSparse(MRInv);

 /* initializing matrice

 for (i = 0; i < size; i++)

 begin

 MReal1[i][i] = 1;

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

47

 if ((2*i < size) && (i != 0)) begin

 MReal1[2*i][i] = 7.0;

 end

 end

 */

 $Diag(MReal1, 2, 1, 7.0);

 /*inverting twice */

 MRInv = MReal1 **(-1);

 MRInv = MRInv ** (-1);

 $display("********displaying all non-zero values on

one line***********\n");

 idx = -1;

 found = $SpReadNextNzElemInLine(MRInv, 4*size/10,

col, idx, r);

 while (found) begin

 $display("MRInv[%d][%d]=%e\n", 4*size/10, col, r);

 found = $SpReadNextNzElemInLine(MRInv, 4*size/10,

col, idx, r);

 end

 $display("********displaying all non-zero values on

one column*********\n");

 col = 2*size/10;

 lin = -1;

 found = $SpReadNextNzElemInCol(MRInv, lin, col, r);

 while (found) begin

 $display("MRInv[%d][%d]=%e\n", lin, col, r);

 found = $SpReadNextNzElemInCol(MRInv, lin, col, r);

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

48

 end

end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

49

7.12 Solving a non-linear differential equation

This example shows how a differential equation with variable coefficients can be

solved in FinSimMath. The equation models the force of a tennis ball hitting a wall

by using extensively the work presented by S.J. Haake, M.J. Carre and S.R.

Goodwill at the University of Shefield, Dept. of Mech. Eng.

This example works on FinSim 10_01_31 and subsequent versions.

This example models the force of a tennis ball hitting a wall. The main model is

that of a spring-mass system governed by the formula: m*y(2) + c*y(1) + k*y = 0,

with y = 0 and y(1) = speed of ball hitting the wall. There are three forces that

push against the wall:

1) the spring force, spring_force is due to the ball being compressed, with

spring_force = k*y.

2) the damper force, damper_force is due to the viscuosity of the ball with

damper_force = c*y(1)

3) the flux force, flux_force is due to the portion of the ball that loses it's speed

during a small time slice. This flux_force is m0 * speed / delta_time, where m0 =

m*s1/s2, where s1 is approx. the surface of a cillinder having as base the

flattened portion of the ball and as hight the current speed y0 * delta_time and s2

is the surface of the ball, which makes

flux_force = y0*y0*m* $VpSqrt(2*r*x0-x0*x0)/(2*r*r), where y0 is the speed at a

particular time, m is the total mass of the ball, r is the radius of the ball, and x0 is

the position of the center of the ball with respect to its original position when the

impact began.

The algorithm solves the problem for speeds of 10m/s and 30m/s in a loop. In an

inner loop the algorithm adjusts the non-linear coefficients and solves the

equation for a number of steps with constant coefficients. It then performs again

the same steps for the new value of the loop variable (named slice), which

automatically adjusts which portion of the data is provided to the differential

equation solver via the "view..as" mechanism. Note that by using the "view..as"

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

50

mechanism no data transfer is needed during the computation, the data being

computed "in place".

The results are displayed via the $PrintM task as well as via the $VpPtPlot task.

module top;

parameter real alpha = 1.65;

parameter real r_total_time = 0.005;/* seconds */

parameter nr_pts_per_ct_coef = 10;

parameter nr_slices_per_sec = 10000;

parameter nr_pts_per_sec = nr_pts_per_ct_coef *

nr_slices_per_sec;

parameter integer Size = r_total_time*nr_pts_per_sec;

parameter real r_size = Size;

parameter real h = 2*r_total_time/r_size;/* set

double of sampling period */

parameter real m = 0.057;/* kg */

parameter real A = 16000000;/* N/m**2 */

parameter real k0= 21000; /*N/m*/

parameter real B = 3500; /* Ns/m */

parameter real r = 0.032; /*m (radius of ball)*/

parameter order = 2;

parameter nrEq = 1;

localparam integer nr_slices = nr_slices_per_sec *

r_total_time;

real Fe[0:0][0 : Size], x[0:0][0 : Size], y[0:0][0 :

Size];

reg [0 : 3199] ressymb[0 : 0];

real coef[0 : 0][0 : 2];

view real x_ct [0:0][0:nr_pts_per_ct_coef]

 as x[0][$I2+slice*nr_pts_per_ct_coef];

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

51

view real Fe_ct [0:0][0:nr_pts_per_ct_coef]

 as Fe[0][$I2+slice*nr_pts_per_ct_coef];

view real y_ct [0:0][0:nr_pts_per_ct_coef]

 as y[0][$I2+slice*nr_pts_per_ct_coef];

real ar_f_spring [0:nr_slices];

real ar_f_damper [0:nr_slices];

real ar_f_flux [0:nr_slices];

real ar_f_total [0:2][0:nr_slices];

integer i, j, isZero, total_time;

integer slice = 0;

real k, c, x0, y0, v0;

initial begin

 #1;

 coef[0][0] = m;

 $InitM(Fe, 0.0);

 for (j = 0; j < 2; j = j + 1)

 begin

 /* find total force for two speeds:

 v0 = 10m/s and v0 = 30m/s */

 v0 = (j == 0) ? 10 : 30;

 x[0][0] = 0;

 y[0][0] = v0;

 isZero = 0;/* kludge for nullifying results for

when the model does not apply*/

 for (slice=0; slice <= nr_slices; slice++)

 begin

 x0 = (x_ct[0][0] > 0) ? x_ct[0][0] : -

x_ct[0][0];

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

52

 y0 = y_ct[0][0];

 c = 4.0*B*x0*(2.0*r-x0);

 k = (slice < 2) ? 120000 : (k0 +

A*(x0**alpha));

 coef[0][1] = c;

 coef[0][2] = k;

 ar_f_spring[slice]= x0*k;

 ar_f_damper[slice] = y0*c;

 if ((y0 > 0) && (x0 > 0)) begin

 ar_f_flux[slice] = y0*y0*m*

 $VpSqrt(2*r*x0-

x0*x0)/(2*r*r);

 end

 else ar_f_flux[slice] = 0;

 ar_f_total[j][slice] = ar_f_spring[slice] +

 ar_f_damper[slice] +

 ar_f_flux[slice];

 ar_f_total[j][slice] = (isZero) ? 0:

((ar_f_total[j][slice]>0)?ar_f_total[j][slice]:0);

 if ((slice != 0) && (ar_f_total[j][slice] < 15

 /* after this value the spring model no

longer applies*/)) begin

 isZero = 1;

 end

 /* call dif eq solver. The array x will contain

the solution and the

 array y will contain the first derivative of

x.

 Note that the initial conditions have been

already placed in x[0]

 and y[0].

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

53

 */

 $VpLODE(order, nrEq, h, nr_pts_per_ct_coef+1,

 x_ct, coef, Fe_ct, y_ct, ressymb);

 end

 ar_f_spring[nr_slices]= x_ct[0][nr_slices]*k;

 ar_f_damper[nr_slices] = y_ct[0][nr_slices]*c;

 ar_f_total[j][nr_slices] = ar_f_spring[nr_slices]

+

 ar_f_damper[nr_slices]

+

 ar_f_flux[nr_slices];

 ar_f_total[j][nr_slices] =

(ar_f_total[j][nr_slices]>0)?

ar_f_total[j][nr_slices]:0;

 end

 $PrintM(ar_f_total,"%e");

 total_time = r_total_time*1000;

 $VpPtPlot("standalonePlotMLSample.txt", 2, h,

 "Tennisball (0.057kg, 0.032m) Force pushing the

wall)", total_time,

 "Time (ms)", "Total Force(N)", 0,

nr_slices, ar_f_total,

 "10m/s", "30m/s");

 end

endmodule

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

54

7.13 Mixed Numerical and Symbolic evaluation

This example works on FinSim 10_05_28 and subsequent versions.

This example shows symbolic expression evaluation, differentiation, integration,

and Laplace Transform.
module top;

`include "finsimmath.h"

 VpReg [0:200]r;

 VpReg [0:200]val_vp;

 VpDescriptor d1;

 real val;

 reg [0:30000] symbExpr1;

 reg [0:30000] symbExpr2;

 real x;

initial begin

 $VpSetDescriptorInfo(d1, 5, 7, `FLOATING,

`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION+`WARNING, 1);

 $VpSetDefaultOptions(5, 7, `FLOATING,

`TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF,

 `SATURATION+`WARNING, 1);

 $VpAssocDescrToData(r, d1);

 $VpAssocDescrToData(val_vp, d1);

 r = $Pi/6;

 x = $Pi/6;

 symbExpr1 = "$VpSin(r*x)";

 $Eval(symbExpr1, val);

 $display("$Eval(%0s) = %e, for x = %e, r = %y\n",

symbExpr1, val, x, r);

 symbExpr2 = $Dif(3, symbExpr1, "x");

 $Eval(symbExpr2, val_vp);

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

55

 $display("*** SDif(SDif(SDif(%0s))) is %0s and its

value for x = %e is %y\n",

 symbExpr1, symbExpr2, x, val_vp);

 symbExpr2 = $Int(1, symbExpr1, "x");

 $Eval(symbExpr2, val_vp);

 $display("$SInt(%0s) = %0s and its value for x = %e

is = %y\n",

 symbExpr1, symbExpr2, x, val_vp);

 symbExpr2 = $Lap(1, symbExpr1, "x");

 $display("$LaplaceT(%0s) = %0s\n", symbExpr1,

symbExpr2);

 symbExpr1 = "x**4 * $VpSin(x)";

 symbExpr2 = $Lap(1,symbExpr1, "x");

 $display("*** Lap(%0s) is %0s \n", symbExpr1,

symbExpr2);

end

endmodule // top

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

56

7.14 Finding roots of polynomials

This example works on FinSim 10_07_15 and subsequent versions.

This example shows how to find the roots of a polynomial and how to find the

polynomial given the roots. Note that the polynomial is not sparse, as all its

coefficients are non-zero, which make the problem more difficult. Also note that

the coefficients are in a close range: -6 to 15, which makes the problem easier.

This example run on a laptop with core i7 at 2.4GHz in 13.89 seconds.

module top;

parameter size = 5131;

 real d, p[0:size-1], p1[0:size-1];

 VpFCartesian r[0:size-2];

 initial begin

 /* set the values of the coefficients of the

 polynomial p */

 $InitM(p, 1.5);

 p[0] = 15;

 p[1000] = 2;

 p [size-2] = 3;

 p [size-1] = -6;

 /* compute the roots r of polynomial p */

 r = $Roots(p);

 $PrintM(r, "%e");

 /* compute the polynomial p1 corresponding to the

 roots r */

 p1 = $Poly(r);

 /* denormalize the polynomial so that the

coefficient

 of the highest order is not one but the same

as

 in polynomial p */

 p1 = p1*p[0];

 $PrintM(p1, "%e");

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

57

 /* compare p and p1 */

 d = $VpDistAbsMax(p, p1);

 $display("distance = %e\n", d);

 end

endmodule // top

7.15 C code callable from FinSimMath

This example runs on FinSim version 10_07_190 or higher. It shows how the

function tf2ssc, written in C can be invoked in a FinSimMath description. In this

example one can see how FinSimMath/Verilog data containers can be passed as

arguments to the function call and used inside C code in order to develop C code

implementing user defined functions.

The tf2ssc function is similar in functionality to the tf2ss function in MatLab, as

described in Wikipedia. It transforms a pair of polynomials representing a transfer

function into four matrices representing Controllable Canonical state space

representation of the corresponding linear system.

To run the example one must:

1) Have the header file, which in this case is called lib.h

2) Have the FinSimMath file, which in this case is called tf2ss.v

3) Have the C file containing the implementation of the functions invoked in

FinSimMath, which in this case is called lib.c.

4) Have the finpli.mak file containing information regarding which .o files are

necesary

5) Invoke finvc with the proper options.

All this necessary information to run the example is presented below.

7.15.1. Header File

The header file in this example is called lib.h and is presented below:

long tf2ssc(long file, int line,

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

58

 int sz1b, int st1b, int end1b,

 int sz2b, int st2b, int end2b, long b,

 int sz1a, int st1a, int end1a,

 int sz2a, int st2a, int end2a, long a,

 int sz1SS, int st1SS, int end1SS,

 int sz2SS, int st2SS, int end2SS, long

SS);

7.15.2. FinSimMath Description

The FinSimMath code invoking the tf2ssc function in this example is called tf2ss.v

and is presented below:

module top;

 `include "finsimmath.h"

parameter Nx = 2; /*nr of states */

parameter integer Ny = 2; /*nr of outputs*/

parameter [0:31]Nu = 1; /*nr of inputs */

real a[0:2], b[0:1][0:2];

real M[0:Nx+Ny-1][0:Nx+Nu-1];

view real A[0:Nx-1][0:Nx-1] as M[$I1][$I2];

view real B[0:Nx-1][0:Nu-1] as M[$I1][2];

view real C[0:Ny-1][0:Nx-1] as M[Nx+$I1][$I2];

view real D[0:Ny-1][0:Nu-1] as M[Nx+$I1][Nx+$I2];

initial begin

 a = {1.0, 0.4, 1.0};

 b = {0.0, 2.0, 3.0, 1.0, 2.0, 1.0};

 M = tf2ssc(b, a);

 $PrintM(a, "%e");

 $PrintM(b, "%e");

 $PrintM(A, "%e");

 $PrintM(B, "%e");

 $PrintM(C, "%e");

 $PrintM(D, "%e");

end

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

59

endmodule

In the FinSimMath description, the state space description is stored in the matrix

M, and the four matrices A, B, C, and D represent portions of M by using the

“view as” construct.

The arguments of C functions callable from FinSimMath can be characters (8 bits),

short integers (16 bits), integers (32 bits), long integers (64 bits) and pointers of

the above mentioned types. It is assumed that all pointers in the interface

correspond to outputs that are going to be written inside the C functions. All

other arguments are assumed to be inputs to the C functions, with the exception

of 64 bit arguments that can also be handles of arrays.

The formal arguments of C functions callable from FinSimMath are either

corresponding to actual arguments that are going to be passed at invocation or to

actual arguments that are being implicitly passed at invocation. For each actual

argument that is an array there are a number of optional implicit arguments that

are automatically inserted by the FinSimMath compiler just before the array.

The implicit optional arguments, in order, are: type, view, and a number of

triplets providing size, start index and end index of each supported dimension.

The number of triplets is specified by the finvc compiler option

+Insert_dimensions=n.

The type is of type int and provides the type of the array. It is inserted if the finvc

invocation uses the option +Insert_type_Info.

The view information is of type long and provides a pointer to the indirection

table for the given "view as" construct. It is inserted if the finvc invocation

includes the option +Insert_view_info.

The options to insert apply to all actual arguments that are arrays. In case some

arrays do not have the arguments to insert (e.g. +Insert_view_info is used, but the

array is not a view, or +Insert_dimensions=2 is used but the array has only one

dimension) then the missing arguments to insert will contain the value zero.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

60

C functions that return a value which is an array will have the output appended to

the list of arguments and will be preceded by all the appropriate implicit

arguments.

7.15.3. C File

The C code implementing the tf2ssc function in this example is called lib.c and is

presented below:

#include "stdio.h"

typedef struct _simDefaultT {

 unsigned char funcId;

 unsigned char zeroDriverVal;

 unsigned char resolution;

 unsigned char v;

} simDefaultT, *simDefaultPT;

typedef struct _simVmemT

{

 int startI;

 int endI;

 unsigned status; /*new, old*/

 union{

 char *memoryP;

 long int fileOffset;

 } p;

} simVmemT, *simVmemPT;

typedef struct _simMemT

{

 union{

 simVmemPT vP;

 char *memoryP;

 } p;

 unsigned int msb1d; /* msb of the address */

 unsigned int lsb1d; /* lsb of the address */

 unsigned int msb2d; /* msb of the word */

 unsigned int lsb2d; /* lsb of the word */

 unsigned int bCnt;

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

61

 int flag; /*memory status:

corruption*/

} simMemT, *simMemPT;

typedef union

{

 simMemPT memP;

 char *csp;

typedef struct _simSignalT

{

 char *p0P;

 unsigned flag;

 unsigned flag2;

 char *p1P;

 char *p2P;

 char *p3P;

 simDefaultT init;

 char *p4P;

 simSignalMiscT misc;

 char *p5P;

 char *p6P;

 char *p7P;

} simSignalT, *simSignalPT;

long tf2ssc(long file, int line, int sz1b, int st1b,

 int end1b, int sz2b, int st2b, int end2b, long

b,

 int sz1a, int st1a, int end1a, int sz2a, int

st2a,

 int end2a, long a, int sz1SS, int st1SS, int

end1SS,

 int sz2SS, int st2SS, int end2SS, long SS)

{

 /* declaration of internal objects needed */

 int i, j;

 char *(*aMP), *(*bMP), *(*SSMP);

 double tmpRe, *A, *B, *C, *D, *aP, *bP, *SSP;

 simSignalPT saP, sbP, sSSP, fileP;

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

62

 /* extract file pointer and line number from

arguments

 provided */

 fileP = (simSignalPT) file;

 /* recasting of arguments */

 saP = (simSignalPT) a;

 sbP = (simSignalPT) b;

 sSSP = (simSignalPT) SS;

 /* extracting memory addresses */

 aMP = (char **)saP->misc.memP->p.memoryP;

 bMP = (char **)sbP->misc.memP->p.memoryP;

 SSMP = (char **)sSSP->misc.memP->p.memoryP;

 aP = (double *)calloc(sz1a * sz2a, sizeof(double));

 bP = (double *)calloc(sz1b * sz2b, sizeof(double));

 /* read b, i.e. coefficients of numerator of transfer

 function */

 for (i = 0; i < sz2b; i++) {

 for (j = 0; j < sz1b; j++) {

 simVpGet_r(bMP, sz1b*i + j, &tmpRe, 0, sz1b*sz2b-

1);

 bP[sz1b*i + j] = tmpRe;

 }

 }

 /* read a, i.e. coefficients of denominator of

transfer

 function */

 if (sz2a == 0) {

 for (i = 0; i < sz1a; i++) {

 simVpGet_r(aMP, i, &tmpRe, 0, sz1a-1);

 aP[i] = tmpRe;

 }

 }

 else {

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

63

 printf(" Error in file = %s, line = %d:

denominator of tf must be a one-dimensional

array\n",fileP, line);

 }

 /* compute A, B, C, D in the controllable canonical

form

 from arrays aP and bP */

 /* allocate internal space for A, B, C, and D */

 A = (double *)calloc(((sz1a-1) * (sz1a-1)),

 sizeof(double));

 B = (double *)calloc(sz1a-1, sizeof(double));

 C = (double *)calloc((sz2b*(sz1a-1)),

sizeof(double));

 D = (double *)calloc(sz2b, sizeof(double));

 /* compute A */

 for (i = 0; i < sz1a-1; i++) {

 for (j = 0; j < sz1a-1; j++) {

 if (i == 0) {

 A[j] = -aP[j+1]/aP[0];

 }

 else if (i == j+1) {

 A[i*(sz1a-1)+j] = 1;

 }

 else {

 A[i*(sz1a-1)+j] = 0;

 }

 }

 }

 /* compute B */

 for (i = 0; i < sz2b-1; i++) {

 B[i] = 0;

 }

 B[0] = 1;

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

64

 /* compute C */

 for (i = 0; i < sz2b; i++) {

 for (j = 0; j < sz1a-1; j++) {

 C[i*(sz1a-1)+j] = bP[i*sz2b+j+1] -

bP[i*(sz2b)] * aP[j+1];

 }

 }

 /* compute D */

 for (i = 0; i < sz1b; i++) {

 D[i] = bP[i*sz2b];

 }

 /* write A, B,C, and D into output */

 for (i = 0; i < sz1SS; i++) {

 for (j = 0; j < sz2SS; j++) {

 if ((j < sz1a-1) && (i < sz1a-1)) {

 /* write A */

 tmpRe = A[i*(sz1a-1)+j];

 simVpPlace_r(SSMP, sz2SS*i+j, &tmpRe, 0,

 sz1SS*sz2SS-1);

 }

 else if ((j >= sz1a-1) && (i < sz1a-1)) {

 /* write B */

 tmpRe = B[i];

 simVpPlace_r(SSMP, sz2SS*i+j, &tmpRe, 0,

 sz1SS*sz2SS-1);

 }

 else if ((j < sz1a-1) && (i >= sz1a-1)) {

 /* write C */

 tmpRe = C[(i-(sz1a-1))*(sz1a-1)+j];

 simVpPlace_r(SSMP, sz2SS*i+j, &tmpRe, 0,

 sz1SS*sz2SS-1);

 }

 else {

 /* write D */

 tmpRe = D[i-sz1a+1];

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

65

 simVpPlace_r(SSMP, sz2SS*i+j, &tmpRe, 0,

 sz1SS*sz2SS-1);

 }

 }

 }

 free(aP); free(bP); free(A); free(B); free(C);

 free(D);

}

Note:

Formal arguments that are of type long and that correspond to actual arguments

which are arrays must be recast into a pointer of type simSignalPT. From this

pointer one can access all the data within the array as shown in the C code above.

7.15.4. Object files

The object files corresponding to the user defined C functions can be specified

either in the file finpli.mak in the variable FINUSERCOBJ:

FINUSERCOBJ = example.o

or via the environment variable with the same name:

setenv FINUSERCOBJ example.o

More than one object files can be specified. If used, the file finpli.mak has to be in

the local directory where finbuild, the linker of the FinSimMath compiler, is called.

If the specified object file does not exist, finbuild will attempt to compile it using a

default compilation rule that calls the C compiler on the corresponding .c file.

The finpli.mak file for this example contains:

FINUSERCOBJ=lib.o

7.15.5. Invocation of finvc related to C code callable from FinSimMath

In FinSim, the header files providing the prototypes of the C functions are passed

to the finvc compiler with the -ch option. This option can be specified any number

of times if more than one header file is required. Note that the header files must

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

66

be self-sufficient (as all well written header files ought to be), i.e. if a header file

uses things defined in another header file then the 2nd header file should be

included in the 1st header file. If any of the header files is in a different directory,

the user can specify the include directory by using the +incdir option the same

way as for Verilog header files.

The actual invocation of finvc for this example is:

finvc +FM +Insert_dimensions=2 +Insert_file_line –ch

lib.h tf2ss.v.

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

67

Copyright (c) 2008-2015 by Fintronic USA, Inc. All rights reserved.

68

8. Concluding Remarks

FinSimMath is an extension of the Verilog IEEE 1364 language having, as

described in chapter 8 of FinSim's User's Guide available at www.fintronic.com

(click on Support, FAQ, download FinSim's Users Guide).

In this era of globalization, when teams from different parts of the world co-

operate on the same project it is more cost effective to have the ESL, RTL and

Gate level descriptions done in the same environment and even in the same

language.

True ESL design space exploration mandates runtime changes of formats and size

of format fields.

Modeling adaptive systems that gracefully degrade is possible only with support

for dynamic format changes.

FinSimMath supports the modeling at the mathematical level (differential

equations, matrix calculus, FFT/IFFT, autocorrelation, etc.) both of the circuit to

be designed and of the environments in which the models of such circuits must be

verified.

FinSim already supports a large subset of FinSimMath and Fintronic USA intends

to provide FinSimMath support also in conjunction with other standard compliant

Verilog/SystemVerilog simulators.

Last but not least FinSim supports the capability to invoke in FinSimMath user

defined C functions that can access any FinSimMath data containers. This feature

makes easy for users to use their own mathematical functions as well as to

implement any needed mathematical function not yet supported by FinSim.

